Document Type
Article
Publication Date
10-1997
Abstract
The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an HI study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4' north and 4' south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3' to the west. The HI associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models-a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The HI in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger HI features contain several X 109 M0 of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from the material associated with the system and that this entire complex contains several proto- or young dwarf irregular galaxies in various stages of development. We are therefore witnessing the early evolution of a number of genuinely young galaxies. Given the evident importance of the NGC 5291 system as a ''nursery'' for young galaxies, careful modeling is required if we are to understand this remarkable galaxy.
Recommended Citation
Astronomical Journal, Vol. 114, No. 1702, October 1997, 1427-1446.
Included in
Educational Assessment, Evaluation, and Research Commons, Higher Education Commons, Higher Education and Teaching Commons