Document Type
Article
Publication Date
2021
Abstract
An extensive correlated molecular orbital theory study of the reactions of CO2 with a range of substituted amines and H2O in the gas phase and aqueous solution was performed at the G3(MP2) level with a self-consistent reaction field approach. The G3(MP2) calculations were benchmarked at the CCSD(T)/CBS level for NH3 reactions. A catalytic NH3 reduces the energy barrier more than a catalytic H2O for the formation of H2NCOOH and H2CO3. In aqueous solution, the barriers to form both H2NCOOH and H2CO3 are reduced, with HCO3 − formation possible with one amine present and H2NCOO− formation possible only with two amines. Further reactions of H2NCOOH to form HNCO and urea via the Bazarov reaction have high barriers and are unlikely in both the gas phase and aqueous solution. Reaction coordinates for CH3NH2, CH3CH2NH2, (CH3)2NH, CH3CH2CH2NH2, (CH3)3N, and DMAP were also calculated. The barrier for proton transfer correlates with amine basicity for alkylammonium carbamate (ΔG‡ aq < 15 kcal/mol) and alkylammonium bicarbonate (ΔG‡ aq < 30 kcal/mol) formation. In aqueous solution, carbamic acids, carbamates, and bicarbonates can all form in small amounts with ammonium carbamates dominating for primary and secondary alkylamines. These results have implications for CO2 capture by amines in both the gas phase and aqueous solution as well as in the solid state, if enough water is present.
Recommended Citation
J. Phys. Chem. A 2021, 125, 9802−9818.
Included in
Educational Assessment, Evaluation, and Research Commons, Higher Education Commons, Higher Education and Teaching Commons