Download Full Text (1.2 MB)


Fungi play a key role in the terrestrial carbon cycle, soil formation, and overall plant growth as terrestrial decomposers (1, 2). Thus, the study of fungi, especially in the fossil record, is critical to understanding how fungal assemblages will react to future warming events. Fossil fungi provide a large-scale, long-term dataset unavailable from modern records, allowing for the generation of viable paleoclimate reconstructions and predictions (3, 4). Despite their importance and advantages in forming ecological and climatological interpretations, deep-time fungi have been underutilized (3). The Fungi in a Warmer World (FiaWW) project aims to deliver the first global view of fungal biodiversity, ecology, and biogeography for the Miocene Climate Optimum (MCO): the warmest interval of the last 23 MY. The MCO is a good proxy for near-future climate change scenarios because atmospheric CO2 concentrations ranged between current concentrations of ~400ppm and future projected concentrations for the end of this century (5, 6).

Publication Date



Arts and Humanities | Business | Education | Engineering | Higher Education | Life Sciences | Medicine and Health Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Fungi in a Warmer World: Middle Miocene Fungal Assemblages and Diversity from Alum Bluff, Florida



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.