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• 
Abstract. Male Wistar rats (250 - 350 g) were injected (SC) daily with the 

putative selective dopamine 0 3 receptor agonist, 7-0H-DPAT (0.01, 0.10, or ,1.0 

mg/kg) or vehicle for 10 days. Fifteen min after each injection, the rats ~ere 

tested for locomotor activity in photocell arenas for 20 min or 2 hr. In :two 

experiments, following this subchronic treatment, all rats receive.a a challe'.nge 
' 

injection of apomorphine (1.0 mg/kg, SC), or cocaine (10 mg/kg, I~) on day '11, 

and were tested for locomotor activity. In a third experiment, dopamine synthe;sis 
I 

in striatal and mesolirnbic (nucleus accumbens-olfactary turbercle) tissue was 
: 

assessed following acute or chronic 7-0H-DPAT treatments by measuring the 

accumulation of dihydroxyphenylalanine (DOPA) after treatment with a DOPA 

decarboxylase inhibitor. Major findings were as follows: a) acute 7-0H-DPAT 

treatment produced a dose-dependent decrease in locomotor activity; b) when 
I 

tested for two hours, the 1.0 mg/kg dose of 7-0H-DPAT produced a progressively 
I 

greater increase in activity across the 10 test days (i.e.
1
, behavioral 

sensitization); c) subchronic treatment with 7-0H-DPAT did not re~ult in cross­

sensitization to either apomorphine or cocaine; d) acute treatmen~ with the 1.0 

mg/kg dose of 7-0H-DPAT significantly decreased dopamine synt9esis in both 

striatal and mesolimbic regions; and e) chronic 7-0H-DPAT treat~ents did not 

affect basal dopamine synthesis in either brain region. Although the behavioral 
I , 

effects of 7-0H-DPAT were similar to the reported effects of the D2/D3 dopamine 

agonist quinpirole, the effects of repeated 7-0H-DPAT treatments !differed from 

those of quinpirole in terms of cross-sensitization and basal dopamine synthesis. 
l 

These results suggest that locomotor inhibition produced by low dqses 7-0H-DPAT 

is not related to dopamine autoreceptor stimulation, and the development of I . 
behavioral sensitization to high doses of 7-0H-DPAT is not due to the development 

I 

of dopamine autoreceptor subsensitivity. 
I 
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I 
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The repeated administration of both direct (e.g., 

(e.g., amphetamine) dopamine receptor agonists in 

apomorphine), and indirect 
I 

rodents r'!sul ts in the 

development of behavioral sensitization, characterized by ~ progressive 
I : 

enhancement of various drug-induced motor behaviors (see Kalivas & Stewart 1991; 

Stewart & Badiani 1993; Robinson & Becker 1986, for reviews). !Although ~any 
I I 

dopamine agonists which induce behavioral sensitization stimulate both D1-i and 

D2-type dopamine receptors, available evidence suggests that the development of 

behavioral sensitization is mediated by the repeated stimulat~on of D1-type 

receptors. For example, the co-administration of selective D1-typ,e, but not 0 2 -

1 

type, dopamine antagonists prevents the development of behavioralisensitization 

to the direct dopamine agonist, apomorphine (Mattingly et al. 1991), and the 
' 

indirect agonist, amphetamine (Drew & Glick 1990; Stewart & Vezin~ 1989; Vezina 

& Stewart 1989). Moreover, rats repeatedly treated with the selective D 1 -~ype 

dopamine agonist, SKF 38393, subsequently display a sensitized locomotor response 

to apomorphine (Mattingly et al. 1993). 

Although the co-administration of D2-type antagonists with mixed D1/D2 

dopamine agonists fails to prevent the development of behavioral sensitization, 

' recent evidence suggests that beha~ioral sensitization may develop as a result 

of stimulation of dopamine receptors within the D2 family (i.e.,! D2 , D3 , & D4). 

I 
For example, repeated daily treatment with the dopamine D2 rec~ptor agonist, 

bromocryptine, or the D2 /D3 receptor agonist, quinpirole, results in a robust 

locomotor sensitization effect (Hoffman & Wise 1992, 1993; Wise & Carlezon 1994; 

Szechtman et al. 1994). Moreover, bramacryptine-induced sensitization cross-

sensitizes to quinpirole (Hoffman & Wise 1993), and quinpirole-induced 

sensitization has been shown to cross-sensitize to apomorphine (Mattingly et al. 
I 

1993) . The development of behavioral sensitization to bromocryptine or 
I 
I 

quinpirole, however, may be prevented by the co-administration of: the selective 

dopamine D1-type antagonist, SCH 23390 (Mattingly et al. 1993; Wise & Carlezon 
I 

1994). Thus, 

necessacy for 

agonists. 

some minimal level of D1 receptor stimulation cippears to be 
I 

the development of behavioral sensitization to D2 Jtype dopamine 

3 



Although it is clear that dopamine D2-type receptors play 1a role in the 

development of behavioral sensitization, attempts to study the involvement of 
I 

specific receptor subtypes within the D, family have been hampered 1by the abs'ence 
- I I 

of sufficiently selective compounds. Bromocryptine, for example, is geneially 

considered to be a selective dopamine D2 agonist, but' it has lessl than a 2_1fold 
. I 

higher affinity for dopamine D2 receptors than D3 receptors (see Schwartz et al. 
I 

1992; Sokoloff et al. 1992). Similarly, although quinpirole has approximately a 

100-fold greater affinity for dopamine D3 receptors than D2 ~eceptors, ! its 

affinity for dopamine D4 receptors is only slightly lower than it,s affinity for 

D3 receptors (Sokoloff et al. 1992; Levesque et al. 1992). : Consequently, 

bromocryptine and quinpirole, in doses that result in locomotor 'sensitization, 
i 

probably stimulate more than one receptor subtype within the D2 ~amily. 

The objective of the present study was to further evaluate the involvement 
' 

of dopamine D2 -type receptors in the development of behavioral sensitization 

using the putative selective dopamine D3 agonist, 7-hydroxy-dipropylaminotetralin 

(7-0H-DPAT). 7-0H-DPAT has been reported to have a 100- and 1000-fold greater 

affinity for dopamine D3 than D2 and D4 receptors, respectively (Levesque et al. 

1992) , and like bromocryptine and quinpirole, it acutely decre~ses locomotor 

activity, dopamine synthesis and release (Ahlenius & Salmi 1994;1 Aretha et al. 
I 

1994; Damsma et al. 1993a,b; Meller et al. 1993; Svensson et al. 1994; Yamada et 

al. 1994) . 

Experiment 1 

As noted, the dopamine D2/D3 agonist, quinpirole, decreases locomotor 

activity when administered acutely, but repeated administration ·results in the 
I . 

development of behavioral sensitization (Szechtman et al. 1994). Moreover, 
I 
' 

repeated quinpirole treatments significantly enhance the locomdtor activating 

effects of apomorphine (Mattingly et al. 1993). The purpose of Exp
1
• 1., therefore, 
' 

was to determine the effects of repeated 7-0H-DPAT treatments on locomotor 

activity and subsequent sensitivity to apomorphine. Consequently,i groups of rats 

were injected daily with various doses of 7-0H-DPAT or vehicle land tested for 
I 

locomotor activity for 10 days. Then, on Day 11, 

4 

all rats were tested for 
I 



locomotor activity following a challenge injection of apomorphine. 

Materials and methods I 
I 

Subjects. Forty-eight male Wistar albino rats (Harlan Industries, ~ndianapo!is, 
I 
' IN) weighing between 250 and 350 g served as subje·cits. All rats were housed 

individually in hanging wire-mesh cages in a colony room with a 12-h light-dark 

cycle and food and water available continuously. All behavioral testing was 

conducted during the light phase of the cycle. 
I 

Apparatus. Activity measures were taken in two BRS/Lehigh Valley cylindrical 

activity drums (Model 145-03) that were 60 cm in diameter and 43f cm high .. The 

interior of each drum was painted flat black, and the floor was1made of 4 cm 
' 

diamond-shaped wire mesh. Each drum was located in a separate sollnd-attenuated 
I 

experimental cubicle that was kept dark during testing. I 

Two banks of three infrared photocells were mounted on the outside of each 

drum. The photocells were approximately 12 cm apart and 2.5 cm above the drum 

floor. The photocell banks were connected to back-path eliminator diodes. 

Movement of the rat through a photocell beam sent a single pulse to the counters. 

Simultaneous pulses (i.e., pulses spaced less than 0.05 s apart) such as might 

occur when two beams are broken at their intersection were recorded as a single 

count by this method. Thus, locomotor activity was defined as the cumulative 
' 

number of photocell interruptions per unit time. 

Drugs. Apomorphine hydrochloride (Sigma) and(±) -7-hydroxy-dipropy~aminotetralin 

hydrobromide (7-0H-DPAT; Research Biochemicals) were dissolved daily in distilled 

H,O and injected SC in a volume of 1.0 ml/kg. Doses of both drugs were calculated 

based upon the salt form of each drug. Vehicle injections were given using the 

same route and volume as the corresponding drug injection. 

Design and procedure. At the beginning of testing, the rats were randomly 

assigned in equal numbers to one of four treatment groups: 0 (vehicle), O.Ol, 

0.10, or l.00 mg/kg 7-0H-DPAT. On each of the first ten days of the experiment . ' 
(I, 

(pretreatment phase), the rats were injected with the appropriate dose of 7-0H-

DPAT and then tested for locomotor activity for 20 min, 

I .. ·., ··: 
.. 1;1 

"•.->~:1 ~~· ~ t 
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15 min after the 
I 
I 



injection. On day 11 of the eXperiment all rats were given a challenge injection 

of apomorphine (1.0 mg/kg) and then tested for activity 15 min l~ter. 

Data analysis. Significant differences among the groups in mean adtivity counts 
I I 

during the pretreatment phase (Days 1 - 10) were determined with! a mixed two-
1 : 

factor analysis of variance CANOVA) using drug treatment group] as a bet~een 

factor and daily test session as a repeated measure. Significant interactions 

were analyzed with additional ANOVAs performed on individual day or group data, 
I 

followed by Neuman-Keuls post hoc tests. Mean activity counts of 'the groups on 
! 

the apomorphine challenge test (Day 11) were analyzed using a one-way between 
! : 

groups ANOVA. For the ANOVAs and multiple comparisons, the alpha level was 
I 

I 
I constrained top~ 0.05. 

Results 

Pretreatment Days 1 -10. Mean Activity counts per 20 min session for the four 

groups across the 10 pretreatment days are displayed in Fig. 1. As may be seen 

in this Figure, 7-0H-DPAT treatments inhibited locomotor activity relativ7 to 

vehicle control rats on the first treatment day. With repeated treatments, 

however, the effects of 7-0H-DPAT on activity changed in a dose-dep~ndent manner. 

Specifically, the 0.10 and 1.0 mg/kg doses of 7-0H-DPAT produced:progressively 

greater increases in activity across days, whereas the lower dos,e group (0.01 

mg/kg) continued to remain less active than the vehicle-treated rats [drug 
' 
I 

effect, F(3, 44)= 9.50, P<0.0001; Drug X Day interaction, F(9, 396)=12.10, P< 

0.0001]. Subsequent analysis of groups' activity on 

three 7-0H-DPAT dose groups were significantly less 

Day 1 indicated that all 
I 

active thaP the vehicle 

control group (Ps < 0.05). The two highest dose groups (0.10 and 1.0 mg/kg) did 

not significantly differ in activity (P > 0.05), but both! groups were 
I 

significantly less active than the 0.01 mg/kg dose group (Ps < 0~05). Analysis 

of the groups' activity on Day 10 indicated that only the 0.01 mg/kg dose group 

was significantly less active than the vehicle control group (P < 0.05). The 

activity of two higher dose groups (0.10 and 1.0 mg/kg) did not!significantly 

differ from that of the vehicle group (Ps > 0.05). 

Apomorohine Challenge Test - Day 11. The mean activity count~ of the four 
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pretreatment groups following an apomorphine challenge injection are shown in 

Fig. 2. As suggested by inspection of Fig. 2, the ANOVA performedlon these data 

revealed no significant activity differences among the groups [druk effect, F(3, 

44) = 0.97, P > 0.05]. Thus, pretreatment with 7-0H-DPAT d{d not affect 
I 

subsequent sensitivity to apomorphine. I 

Experiment 2 

Consistent with previous findings, 7-0H-DPAT produced an acute dose-

dependent decrease in locomotor activity (Svensson et al. 1994). The locomotor 

inhibition produced by the two higher doses of 7-0H-DPAT (0.10 and 1.0 mg/kg), 
I 

however, dissipated with repeated treatments. This pattern of activity observed 
I 

with repeated 7-0H-DPAT treatments is almost identical to that observed 
! 

previously with repeated quinpirole treatments under the same test conditions 

(cf., Mattingly et al. 1993). However, repeated quinpirole treatments 

significantly increase the locomotor response to a subsequent apomorphine (1.0 

mg/kg) challenge injection (Mattingly et al. 1993), whereas repeated 7-0H-DPAT 

treatments in Exp. 1 did not affect subsequent behavioral sensitivity to the same 

challenge dose of apomorphine. 

The development of behavioral sensitization to apomarphine iind quinpirole 

is accompanied by an increase in basal dopamine synthesis in striatal and 

mesolirnbic tissue, which has been attributed to the development of autoreceptor 

subsensitivity (Rowlett et al. 1991, 1995). Dopamine D3 receptors are thought to 

' 
function as autoreceptors (e.g., Meller et al. 1993), and consistent with this 

view, 7-0H-DPAT has been reported to acutely decrease dopamine synthesis and 

release (Aretha et al. 1994; Damsma et al. 1993a). The purpose oflExperiment 2, 
' 

therefore, was to determine whether repeated 7-0H-DPAT treatments, like 

quinpirole and apomorphine, would also produce an increase in basal dopamine 

synthesis. Consequently, in Experiment 2, groups of rats were injected with 7-0H­

DPAT and tested for locomotor activity for ten days as in Exp. 1. On Day 11, 

basal dopamine synthesis was assessed by measuring the accumulation of 3, 4 -

Dihydroxyphenylalanine (DOPA) in striatal and mesolirnbic (nucl~us accurnbens-
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olfactory tubercle, NAOT) tissue, after administration of a DOPA decarboxylase 

inhibitor. In addition, a preliminary experiment was conducted to ~nsure that the 
' 
' ' doses of 7-0H-DPAT used in this experiment decrease dopamine synthesis 1 when 
I , 

administered acutely. 

Materials and methods 

Subjects and design. Seventy-two male Wistar albino rats (Harian ~prague Dawley, 

Indianapolis, IN) weighing between 250 - 300 g served as subjects. In both 

' experiments, the rats were randomly assigned, in equal numbers, ,to one of four 

treatment groups: 0.00 (vehicle), 0.01, 0.10, or 1.00 mg/kg 7-0H"DPAT. All rats 

were housed and maintained as in Exp. 1. Behavioral testing and brain tissue 
I 

collection were conducted during the light phase of the light-dark cycle. 
' 

Locomotor activity was measured the same as previously describe~. 

Tissue dissections and assay for DOPA. For tissue dissections, rats were killed 
' 

by rapid decapitation and the brains were removed and placed on an ice-cold 
: 

dissection plate. Striatal and NAOT samples were dissected from a coronal slice 

that extended approximately 2-3 mm anterior to bregma. Each sam~le was weighed 

and placed in 0.1 M HCL04 (100 mg/ml) and stored at -700 C. 

On the day of the assay, the tissue samples were thawed and sonicated 

(Vibracell, setting 80). The tissue homogenates were then centrifuged at 30,000g 

for 15 min (4°C) . Supernatants (20 ul) were assayed for DOPA 'using a high-
1 

performance liquid chromatograph system consisting of·a Bioana~ytical Systems 

LC4B electrochemical detector (working electrode = +750 mV against the Ag/AgCl 

' reference electrode), a PM-11 pump, and a temperature-controlled column (35°C, 

3 um) . The mobile phase consisted of 50 mM Na2HPO., 124mM citric ac.id, .1 mM EDTA, 
' 
' and 10% methanol (pH 3.0). The amount of DOPA was determined by comparison with 

the peak heights of DOPA standards, which were assayed daily. Peak identity was 

verified by retention times and by sometimes spiking a tissue sample with a small 

amount of DOPA standard. 

Drugs. 7-0H-DPAT was prepared and administered as previously described. The DOPA 

decarboxylase inhibitor, NSD-1015 (M-hydroxybenzylhydrazine dihydrochloride, 
I 
' Sigma), was dissolved daily in distilled water and injected IP in a volume of 1.0 
' 
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ml/kg. DOPA standards (Research Biochemicals) were mixed in 0.1 M HCL04 • 

Procedures. In the preliminary experiment, rats in·the four groups (n=6/group) 
I 

were first injected with the appropriate dose of 7-0H-DPAT and 15 min later 

injected with NSD-1015 (100 mg/kg) . All rats were then killed 30! min late~. In 

the basal dopamine synthesis experiment, rats in the four 
I 

group;s (n=l2/g~oup) 
I I 

were injected daily with the appropriate dose of 7-0H-DPAT and tested for 
' 

locomotor activity for 10 days as in Experiment 1. Twenty-four hours after the 

' last drug treatment, all rats were given NSD-1015 (100 mg/kg) and were sacrificed 

30 min later. 
.:: 

Results 

Preliminary dopa.mine svnthesis exoeriment. Mean DOPA levels i:r;i. striatal and 

mesolimbic (NAOT) tissue for the four groups given various doses of 7-0H-DPAT are 

presented in Figure 3. As may be seen, DOPA accmnulation was less in mesolimbic 

than striatal tissue [region effect, F(l,20) = 22.36, P < 0.0001]. More 

important, DOPA accumulation was significantly decreased by 7-0H-DPAT [drug 

effect, F(3, 20) = 5.15, P < 0.01], in both striatal and mesolimbic regions (Drug 

x Region interaction, F(3, 20) = 0.23, P > 0.05). Subsequent "!'alysis of the 

significant drug effect indicated that DOPA levels were significantly reduced for 

rats given 1.0 mg/kg 7-0H-DPAT compared to rats given vehicle [Ne~an-Keuls test, 

p < 0.05]. DOPA accumulation in rats injected with either o.oi o~ 0.10 mg/kg 7-

0H-DPAT, however, did not differ significantly from that of rats injected with 

vehicle [P > 0.05]. 

Locomotor activity - Days 1 - 10. The effect of daily 7-0H-DPAT treatments on 

locomotor activity was the same as in Exp. 1 (data not shown). Bri~fly, all doses 

of 7-0H-DPAT inhibited locomotor activity after the first inje~tion, but this 

inhibition progressively decreased for the 0.10 and 1.0 mg/kg dose groups across 

the ten activity test sessions [drug effect, F(3, 44) = 5.00, P,< 0.01; Drug x 

Day interaction, F(9, 396) = 11.22, P < 0.0001]. On Day 10, the 0.01 mg/kg 7-0H-

DPAT group remained significantly less active than the 
{!, • 

vehicle control group (P 

' 
< 0.05), but the activity of the two higher dose groups (0.10 and ~.00 mg/kg) did 

not significantly differ from that of the vehicle rats (P > 
I 

0. 05) . 

i 
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DOPA Accumulation. Mean DOPA levels in the two brain regions for r~ts previously 
I 

treated with 7-0H-DPAT or vehicle are shown in Figure 4. A mixed factor ANOVA 
. ' 

performed on these data revealed a significant main effect of reJion [F(l, :44) 

= 7.98, P < 0.01). However, neither the main effect of drug nor thelDrug X Re~ion 
interaction were significant [F(3,44) = 0.81, P > 0.05 and F(l,44) = 0.86, p > 

a.as, respectively). Thus, although the highest dose of 7-0H-DPAT acutely 

decreased dopamine synthesis, repeated 7-0H-DPAT treatments did not result in an 

increase basal dopamine synthesis. 

Experiment. 3 

The results of Experiment 2 suggest that dopamine D, autoreceptors do not 

become subsensitive with repeated 7-0H-DPAT treatments. This lac~ of change in 

the sensitivity of autoreceptors with repeated 7-0H-DPAT treatment may account 

for the differential effect of repeated quinpirole and 7-0H-DPAT treatments on 

subsequent sensitivity to apomorphine (cf., Mattingly et al. 1993; Exp. 1). 

The development of autoreceptor subsensitivity has also been suggested to 

be one of several mechanisms mediating the development of behavioral 

sensitization to the indirect agonist, cocaine (see Henry et al. 1989). 

Consistent with this view, quinpirole has been reported to cross-sensitize to 

cocaine (Horger & Schenk 1991), and rats sensitized to cocaine display cross­

sensitization to apomorphine (Kityatkin 1994) . The purpose of 1Experiment 3, 

therefore, was to determine the effect of repeated 7-0H-DPAT 'treatments on 

subsequent sensitivity to cocaine. If the development of, autoreceptor 

subsensitivity is responsible for the cross-sensitization observed among 

quinpirole, apomorphine, and cocaine, then repeated 7-0H-DPAT treatments should 

not affect subsequent behavioral sensitivity to cocaine. 

The behavioral results of Experiments 1 and 2 indicate that 7-0H-DPAT 

acutely inhibits locomotor activity. This locomotor inhibition, however, 

dissipates with repeated treatments of higher doses of 7-0H-DPAT .. As mentioned, 

this pattern of activity changes is similar to that produced by ql.iinpirole when 
' 

short duration activity test intervals are used (cf., Mattingli et al. 1993; 

Rowlett et al. 1995). With longer test intervals, however, 

10 

' ' quinpirole has been 

I 
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reported to produce a biphasic locomotor response acutely and locomotor 

sensitization with repeated treatment (Eilam & Szechtman 1989; Szechtman et al. 
' 

1994). In Experiment 3, therefore, we extended the daily activityltest interval 
I 

from 20 minutes to two hours to determine whether 7-0H-DPAT treatments w~uld 
I 

produce a similar pattern of activity. I 

Materials and methods 

Subiects. design, drugs. and procedure. Twenty-three male Wistar rats (Harlan 

Sprague-Dawley) weighing between 250-300 g served as subjects. At the beginning 

of the experiment, the rats were randomly assigned to one of four dose groups (N 

' = 5-6/group) : o. oo (vehicle) , o. 01, o .10, or 1. 00 mg/kg 7-0H-DPAT ., The rats were 

tested daily for locomotor activity after the appropriate drug injection for ten 

days under the same conditions as in previous experiments ex~ept the test 

duration was extended to 120 minutes. On Day 11, all rats were tested for 

activity after a challenge injection of cocaine hydrochloride (Sigma, 10 mg/kg) . 

Cocaine hydrochloride was dissolved in distilled 11,0 and injected IP in a volume 

of 1.0 ml/kg 5 min prior to activity testing. 

Results 

Pretreatment Days 1-10. Mean Activity counts per 120 min session for the four 

groups across the 10 pretreatment days are displayed in Fig. 5. As may be seen 

in this Figure, 7-0H-DPAT treatments inhibited locomotor activi~y relative to 

vehicle control rats on the first treatment day. With repeated treatments, 

however, the effects of 7-0H-DPAT on activity changed in a dose-dependent manner. 

Specifically, the 1.0 mg/kg dose of 7-0H-DPAT produced progressively greater 

increases in activity across days, whereas the two lower dose groups (0.01 and 

0.10 mg/kg) continued to remain less active than the vehicle-treated rats [drug 

effect, F(3, 19)=53.99, P<0.0001; Drug X Day interaction, F(9,: 171)=6.58, P< 

0.0001]. Additional ANOVAs performed on individual group data across the 10 test 

days indicated that activity of the 1. O mg/kg dose group significantly increased, 

[day effect, F(9, 45)=4.96, P< 0.0001]. In contrast, the activit~ counts of the 

vehicle and 0.01 mg/kg dose groups significantly 
I 

decreased 
I 

across days 

[F(9,36)=22.22, P<0.0001 and F(9,45)=9.45, P<0.0001, respectively]', andthe total 
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activity counts of the 0 .10 mg/kg dose group did not significantly change 

[F(9,45) =0.36, P>.05]. These drug-induced changes in activity, across d,ays, 

however, were not constant across time-blocks within the 10 test se1ssians, [block 

effect, F(5,95)=12.50, P<0.0001; Drug X Block interaction, F(15, 95)=18.89, 
. I 

P<0.0001; Day X Block interaction, F(45, 855)=3.06, P< 0.0001; Drug X Day X Block 

interaction, F(135, 855)=1.63, P< 0.0001. 

The nature of these interactions is depicted in Fig. 6 which presents the 

within session activity of the groups on treatment Day 1 and Day 10. Subsequent 

analyses of the groups' activity on Day 1- indicated that all 7~0H-DPAT doses 

significantly inhibited activity on the first two 20 min blocks (Ps <0.05). On 

blocks 4 and 5, only the 0.10 mg/kg group was significantly less active than 

vehicle rats (Ps < 0.05). In contrast, on block 6 the rats treated with the 1.0 

mg/kg dose of 7-0H-DPAT were significantly more active than vehicle-treated rats 

(P < 0.05). Thus, the 1.0 mg/kg dose of 7-0H-DPAT produced a weak biphasic effect 

on locomotor activity. However, whether this finding represents a true biphasic 

effect or a simply a drug-induced disruption of habituation processes is not 

clear. 

By treatment Day 10, the initial inhibitory effect of the 0.10- and 1.00-

mg/kg doses of 7-0H-DPAT had dissipated. In contrast, rats receiving the 0.01 

mg/kg dose of 7-0H-DPAT remained significantly less active than ~ehicle control 

rats during the first 20 min of this session (P < 0.05). The 0.10 mg/kg dose 

group did not significantly differ in activity from the vehicle rats at any time­

block on this treatment day (Ps > 0.05). Further, consistent with the results of 

Experiments 1 and 2, the 1.0 mg/kg rats did not significantly diff~r from vehicle 

rats on the first two 20 min time-blocks (Ps > 0.05). However, as may be seen in 

Fig. 6, these rats displayed progressively greater increases in activity across 

the last four 20 min blocks relative to vehicle-treated rats (Ps < 0.05). Thus, 

the daily increase in activity observed in the 1.0 mg/kg dose group across' days 

(Fig. 5) was largely due to progressive increases in activity in ~he second hour 

of testing. 

Cocaine Challenge Test - Day 11. Figure 7 presents the mean activity counts of 
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the four pretreatment groups across the six 20 min time-blocks following a 

challenge injection of cocaine. The cocaine challenge injection pr'oduced a large 
I 

increase in activity in rats previously treated with vehicle for I 10 days <.cf., 

Fig. 6, Day 10). As expected, this cocaine-induced increase in actiVity decreased 
' ' 

across the two hour test session [block effect, F(5, 95)=144.28, P< 0.0001). More 

important, rats previously treated with 7-0H-DPAT for 10 days did not 

significantly differ from vehicle-pretreated rats in this cocaine-induced 

increase in activity [drug effect, F(3, 19)=1.81, P > 0.05); I Drug X Block 

interaction, F(l5, 95),;l.28, P > 0.05]. 

Discussion . ' 

Consistent with previous studies, the acute administratioll of 7-0H-DPAT 

produced an initial decrease in locomotor activity (Ahlenius & Salmi 1994; Damsma 

et al. 1993a; Svensson et al. 1994) . The acute locomotor inhibiti,on produced by 

7-0H-DPAT has generally been attributed to the stimulation of dopamine 

autoreceptors (e.g., Ahlenius & Salmi 1994) . Whether this 7-0H-DPAT-induced 

decrease in activity is related specifically to the selective stimulation of D3 

autoreceptors is not known. However, doses of 7-0H-DPAT below the affinity of D2 

receptors have been reported to produce a decrease in locomotor activity and a 

maximal decrease in extracellular dopamine within 20 minutes after treatment 
! 

(Damsma et al. 1993a). Thus, the locomotor inhibition produced by the lowest dose 

of 7-0H-DPAT (0.01 mg/kg) used in the present study may reflect selective D3 

autoreceptor stimulation. However, this dose of 7-0H-DPAT did not· significantly 

affect dopamine synthesis in the current study. Moreover, others! have reported 

a reduction in locomotor activity with low doses of 7-0H-DPAT that do not 
I 
I 

significantly affect dopamine synthesis or release (e.g., Svensso~ et al. 1994). 

These findings suggest the possibility that the locomotor inhibition produced by 

low doses of 7-0H-DPAT may be due to stimulation of a postsynaptic D3 receptor, 

rather than to D, autoreceptors (see .~lso, Waters et al. 1993). 

With repeated administration}the initial inhibitory effects of the 0.10 
.. , I 

and 1.0 mg/kg doses of 7-0H-DPAT, but not the 0.01 dose, progress~vely declined. 
• . I 

This finding is similar to that· observed with repeated quinpirble treatments 
I -~··; I 

. ... 1:1 
'." '·:.i ~~· ~' I 
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(Mattingly et al. 1993; Rowlett et al. l.995), and may be related to the 

development of autoreceptor subsensitivity (Rowlett et al. 1995). Consistent with 
I 

a role of dopamine autoreceptors, acute treatment with the l..O mgAkg dose of 7-, 
OH-DPAT significantly decreased dopamine synthesis in both striatal land 

I 
mesolimbic tissue, and the 0.10 mg/kg dose tended to decrease (although 'not 

, I 

' significantly) dopamine synthesis in the mesolimbic region in the present st~dy. 

Thus, these doses may stimulate dopamine autoreceptors. However, ;with repe~ted 

treatment, quinpirole results in an increase in basal dopamine synt~esis (Rowiett 

et al. l.995), presumably due to the development of autoreceptor subsensitiv;ty. 

In contrast, repeated 7-0H-DPAT treatments did not significantly, affect basal 

dopamine synthesis in the present study. Hence, autoreceptor subsensitivity may 
' ' 

not account for the tolerance observed to the inhibitory effects of the.two 

higher doses of 7-0H-DPAT. 
I 

When a long duration test interval was used in Exp.3, the 1.0 mg/kg dose 

of 7-0H-DPAT, but not the O.Ol. or O.l.O mg/kg doses, resulted in the development 

of behavioral sensitization in a manner similar to that produced by repeated 

bromocryptine (Hoffman & Wise l.992, 1993; Wise & Carlezon 1994) and quinpirole 

(Szechtman et al. l.9 89) treatments. In contrast, the locomotor inhibition 

produced by the o.Ol. mg/kg dose of 7-0H-DPAT, the dose most likely to be 

selective to D3 receptors, did not significantly change across the ten day test 
I 

period. Taken together, these findings suggest that the development' of behavioral 
I 

sensitization to dopamine D2 -type receptor agonists may require: some minimal 

level of dopamine D2 receptor stimulation. It is possible, however, that the 

effects of D2 and D, receptor stimulation are additive and that the development 

of behavioral sensitization may result from some minimal level of combined D2 and 

D3 receptor activity. 

Despite the fact that the high dose (1.0 mg/kg) of 7-0H-DPAT produced a 

pronounced behavioral sensitization effect, repeated 7-0H-DPAT treatments at any 
I 

dose did not increase subsequent sensitivity to the locomotor-actiVating effects 
I 

of cocaine or apomorphine. As noted previously, rats sensitizedlto quinpirole 
I 

display cross-sensitization to cocaine and apomorphine (Horger & Schenk 1991; 
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Mattingly et al. 1993), and cross-sensitization between cocaine and apomorphine 

has also been reported (Kityakin 1994). The lack of cross-sensitization be~ween 
• I ! 

7-0H-DPAT and apomorphine and cocaine may be related to the apparent inab~lity 
I ~ 

of repeated 7-0H-DPAT treatments to induce autoreceptor subsensit1vity. RepJated 
~ I 

apomorphine, quinpirole, and cocaine treatments have been reported to prOduce 
I 

autoreceptor subsensitivity (Rebec & Lee 1983; Jeziorski & White 1989; Rowlett 

et al. 1995), which appears to contribute indirectly to the development of 

behavioral sensitization (see Henry et al. 1989). In the present study, however, 

no evidence of autoreceptor subsensitivity following repea_ted 7-0H-DPAT 

treatments was observed. Indeed, even doses of 7-0H-DPAT that acutely decreased 

dopamine synthesis did not significantly affect basal dopamine synthesis with 

repeated administration. Thus, the development of behavioral seµsitization to 

high doses of 7-0H-DPAT, like tolerance to the initial locomotor inhibition, does 

not appear to be related to changes in autoreceptor sensitivity. ,Interestingly, 

it has recently been reported that rats sensitized to the locomotor-activating 

effects of the D2-type agonist, bromocryptine, like 7-0H-DPAT, are not cross-

sensitized to cocaine (Hoffman & Wise 1993) . At present, it is not clear why 

differences in cross-sensitization occur following repeated 7-0H-DPAT, 

quinpirole, and bromocryptine treatments. 

The differential effects of selective dopamine recepto~ agonists in 

producing locomotor sensitization/ cross - sensitization and changes in basal 

dopamine synthesis are summarized in Table 1. As may be seen in this table, the 

available information suggests that despite similar D2/D3 receptor profiles, 

quinpirole, but not 7-0H-DPAT, closely resembles apomorphine. That is, 

quinpirole, like apomorphine, produces locomotor sensitizati~n and cross­

sensitization to cocaine as well as acute decreases in dopamine ~synthesis and 

enhanced basal dopamine synthesis after repeated treatments. In contrast, 7-0H­

DPAT does not produce cross-sensitization to apomorphine or cocaille and does not 

result in enhanced basal dopamine synthesis after repeated treatments. As 
' ' mentioned,. the lack of an enhanced basal dopamine synthesis effect I after repeated 

7-0H-DPATmay reflect the absence of autoreceptor subsensitivity. Interestingly, 
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comparison of apomorphine, quinpirole, and 7-0H-DPAT reveals a potential pattern; 

the absence of enhanced basal dopamine synthesis may be correlated with the lack 

of cross-sensitization to other dopamine agonists. This potential Jorrelatio~ may 

be consistent with an hypothesis developed by Henry et al. (1989). !which sug~ests 
that repeated cocaine treatment results in subsensitivity to impJlse-regulJting 

autoreceptors followed by terminal field D1 receptor supersensitivityl. We 

previously have postulated that repeated quinpirole treatments,may result in 
' 

autoreceptor subsensitivity, consequently increasing stimulation:of D1 receptor 

via increased dopamine release (Mattingly ·et al. 1993; Rowlett.et al. 1995). 

Because repeated stimulation of D1 receptors is sufficient .to produce a 

sensitized response to apomorphine (see Table 1), we propose that cross-

sensitization to apomorphine and cocaine was not observed after repeated 7-0H­

DPAT treatments because of a lack of D1 receptor stimulation in the absence of 

autoreceptor subsensitivity. 

As may be seen in the Table, several inconsistencies are evident with this 

hypothesis. For example, 7-0H-DPAT did produce locomotor sensitization. Since 

repeated 7-0H-DPAT treatments did not affect autoreceptor sensitivity, it is not 

clear how such treatments could result in D1 receptor supersensitivity. Perhaps 

locomotor sensitization to 7-0H-DPAT may be directly related to
1 

the selective 

stimulation of D3 receptors. Further, although the non-selective D2-type agonist 

bromocryptine resembles apomorphine and quinpirole in some respects (see Table 

1), it does not produce cross-sensitization to cocaine (Wise & Carlezon 1994). 
' 

Based upon receptor selectivity, we would predict that repeated bromocryptine 

treatments would result in enhanced basal dopamine synthesis. In contrast, 

because bromocryptine does not produce cross-sensitization to cocaine, we may 

also predict that repeated treatments with this compound would not result in 

enhanced basal dopamine synthesis. Resolution of these inconsistencies awaits 
I 

further study. Moreover, it should be noted that a variety of other properties 

of these drugs may account for the discrepant findings. For example, early 

studies with bromocryptine suggested that ,this compound has an extremely long 
' I 

duration of action and may act in an irreversible fashion (Bannon et al. 1980) 
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In summary, the behavioral effects of repeated 7-0H-DPAT treatments are 

similar to the reported effects of other dopamine 0 2-type clgonists. Like 
' 

quinpirole andbromocryptine, 7-0H-DPAT acutely inhibits locomotoJ activityj but , I 
with repeated treatment, results in the development of behavioral.lsensitization. 
' . I I 

Unlike quinpirole, however, repeated 7-0H-DPAT treatment does !not result in 

cross-sensitization to apomorphine or cocaine, and does not affect 'basal dopiine 

synthesis .. These differences suggest that the development 'of behavioral 

sensitization to dopamine agonists is not mediated by a common unitary 

neurochemical mechanism' (cf., Hoffman & Wise 1993; Mattingly et al. 1994) . 
. •'l 

.,, 
(1, 
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Figure Captions 

Fig. 1. Mean activity counts (±SEM) across 10 daily 20 min test ses~ions for rats 
' 

treated with either vehicle (0.00 mg/kg) or 7-0H-DPAT (0.01, 0.10, or 1.00 

mg/kg) . i 
' Fig. 2. Mean activity counts (± SEM) during the 20 min test session following an 

I 

acute injection of apomorphine (1.0 mg/kg, SC) on Day 11 for rats previously 

treated for 10 days with either vehicle (0.00 mg/kg) or various qoses of 7-0H­

DPAT (0.01, 0.10, or 1.00 mg/kg). 

Fig. 3. Mean DOPA levels (ug/g ± SEM) following an injection of vehicle or 

various doses of 7-0H-DPAT (0.01, 0.10, or 1.00 mg/kg). All rats were treated 

with NSD-1015 (100 mg/kg) prior to dissection of the striaturn or NAOT (nucleus 

accurnbens-olfactory turbercle) . 

* P< 0.05 vs vehicle group, Neurnan-Keuls test. 

Fig. 4. Mean DOPA levels (ug/g ± SEM) for rats given 10 daily ,injections of 

vehicle or various doses of 7-0H-DPAT (0.01, 0.10, or 1.00 mg/kg). All rats were 

treated with NSD-1015 (100 mg/kg) on Day 11 prior to dissection of the striaturn 

or NAOT (nucleus accurnbens-olfactory turbercle) . 

Fig. 5. Mean total activity counts (± SEM) across the 10 daily 2 hr test sessions 
I 

for rats treated with either vehicle (0 .. 00 mg/kg) or 7-0H-DPAT <9.01, 0.1.0, or 
I 

1. oo mg/kg) . I 

Fig. 6. Mean activity counts (± SEM) across the 20 min time-blocks on Day l (top 

panel) and Day 10 (bottom panel) of testing for groups of rats injected daily 
I 

with either vehicle (0.00 mg/kg) or various doses of 7-0H-DPAT (0.01, 0.10, or 

1. 00 mg/kg) . 

* p < 0.05 7-0H-DPAT dose group vs vehicle group, Neurnan-Keuls test. 
I 

Fig. 7. Mean activity counts (± SEM) across the 20 min time-blocks following an 
I 

acute injection of cocaine (10 mg/kg, IP) on Day 11 for rats previously treated 
i 

for 10 days with either vehicle (0.00 mg/kg) or various doses of 7-0H-DPAT (0.01, 

O .10, or 1. 00 mg/kg) . 
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Table l. comparison of sensitization and sensitization-related effects among apomorphine (Mixed D,/D,-type), . 
quinpirole (D,/D,), 7-0H-DPAT (D,), bromocryptine· (D,-type) and SKF 38393 (D1-type) in rate. 

cross-sensitization/ 
sensitization' 

agonist sensitization' apomorphine cocaine decrease DA synthesis' 

apomorphine + + + 
quinpirole + + + 
7-0H-DPAT + 
bromocryptine + * 
SKF 38393 + * 

symbols: + effective, - not effective, * not tested. DA, dopamine. 
'sensitization to the locomotor effects of individual drugs. 

+ 
+ 
+ 
+ 

enhance basal DA synthesis' 

+ 
+ 

* 

'cross-sensitization, as revealed by a challenge test with apomorphine or cocaine, or sensitization to 
apomorphine or cocaine by a drug that did not produce sensitization itself. 
'agonist-induced decrease in striatal dihydroxyphenylalanine(DOPA) accumulation (after NSD-1015 administration). 
'increase in basal DOPA accumulation in striatum, 24 hours after the last chronic treatment. 
referencee:8annon et al., 1980;Brown et al., 19851Hoffman and Wise, 1993;Horger and Schenk, 1991; Kiyatkin, 
1994; Mattingly et al., 1993; Rowlett et al., .1991,1993,19951 szechtman et al., 1994. 
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