
Morehead Electronic Journal of Applicable Mathematics
Issue 3 — CS-2002-02
Copyright c©2003

A CNF Analogue to Strengthening
Sean Weaver1

University of Cincinnati, Cincinnati, Ohio, 45215-0030

Abstract

We introduce a new BDD binary operation called strengthening and
show that its effect can be completely characterized in terms of the well
known clausal operations of resolution and subsumption.

1 Introduction

We are interested in large Boolean functions which are expressed as conjunc-
tions (logical “and”) of Boolean functions, each involving a small, fixed number
k of input variables. Typically k is less than 20. The question of determining
whether some assignment of values (1 or 0 corresponding to true or false, re-
spectively) to input variables causes a given large Boolean function to evaluate
to 1 is called the Satisfiability problem (or SAT for short). Instances of SAT
appear quite often in practice. For example, to determine whether a VLSI de-
sign matches its specification both the design and specification are expressed as
Boolean functions D and S and then they are checked for equivalence, which
means they are checked to see whether there is no assignment which causes
both D and S to evaluate to different values. Both D and S can be quite large
but typically are expressible as conjunctions of small functions where 1) each
small function represents the equivalence of the function corresponding to an
electronic logic “gate” and a newly created variable representing its output; 2)
each logic gate has a small number of inputs; and 3) an input to one logic gate
can be an output of another.

Large Boolean functions such as those described above are often expressed
as collections of Binary Decision Diagrams. A Binary Decision Diagram is a
rooted directed acyclic graph with nodes labeled by names of input variables,
except for two special nodes labeled 0 and 1. All nodes, except for the two
special nodes, have two outgoing edges, one labeled 1 and one labeled 0. The
special nodes have no outgoing edges. A Binary Decision Diagram specifies the
truth table for a corresponding Boolean function f : that is, the mapping from
an assignment of input values to 0 or 1. A path from root to the 1 node specifies
a cylinder of assignments of values to inputs which causes f to evaluate to 1:

1This work was done by Sean Weaver as part of an undergraduate senior project where
Dr. John Franco was the advisor.
Keywords: Satisfiability, CNF, DNF, BDD, Resolution, Subsumption, Strengthening, Boolean

1

Weaver 2

namely, for each node in the path, assign to the variable labeling the node the
value indicated by the outward directed edge from that node on the path (all
assignments of other variables in conjunction with that specified by the path
causes f to evaluate to 1). Similarly, a path from the root to the 0 node specifies
a cyclinder of assignments which causes f to evaluate to 0. We are concerned
with a particular form of Binary Decision Diagrams called Reduced Ordered
Binary Decision Diagrams [1]. In the following we will use the term BDD to
mean Reduced Ordered Binary Decision Diagram. This form is described in
detail in section 3.

To determine the satisfiability of a large Boolean function, it is common
practice to first translate the function into Conjunctive Normal Form (CNF):
that is, as a conjunction of disjunctions of literals. A literal may be positive
(represented as a variable, say v) or negative (represented as the variable’s
complement, say ¬v). If v has value 1 then ¬v has value 0 and if v has value 0
then ¬v has value 1. A disjunction of literals is called a clause: a clause has value
1 if and only if at least one of its literals has value 1. The logical connective ∨ is
used to delimit literals of a clause. As an example, (v1 ∨ ¬v2 ∨ v3) represents a
clause. This clause has value 1 if v2 has value 0 or either v1 or v3 have value 1. A
CNF expression is a conjunction of clauses: the expression has value 1 if and only
if all its clauses have value 1. The logical connective ∧ is used to delimit clauses
of an expression. As an example, (v1∨¬v2∨v3)∧(¬v1∨v3∨v4)∧(¬v2∨¬v3∨¬v4)
is a CNF expression which has value 1 if v1 and v3 have value 1 and v2 has value
0 and has value 0 if all variables have value 1. For the rest of the paper we will
represent CNF expressions in the following way:

Definition 1 CNF Representation: Express a CNF expression as a set of sets
of literals.

Example 2 The CNF expression

(v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ v4) ∧ (v2 ∨ ¬v4)

is expressed as
{{v1,¬v2, v3}, {¬v1, v4}, {v2,¬v4}}.

�

The Satisfiability problem is well known to be hard, in general. Solutions
may be found significantly faster depending on how the given function is rep-
resented, whether as a collection of BDDs or a CNF expression, and what op-
erations are applied to that representation. In (Franco et. al., 2002) a system,
called SBSAT, for solving SAT given large Boolean functions expressed as a col-
lection of BDDs is proposed. Unlike other systems (see, for example, [4, 5, 6, 7]),
SBSAT does not translate the BDDs to CNF before searching for a solution be-
cause information that is important to reducing the search time may become
garbled during the translation. Instead, the collection of BDDs is pre-processed

Weaver 3

using some new, efficient BDD operations, creating a reduced and simplified col-
lection of BDDs to which search is applied. If the input is translated to a CNF
expression, a number of primitive clausal operations could be applied to reduce
the clause set. Among these are resolution and subsumption. The question we
ask is whether the new BDD operations can be characterized easily in terms of
clausal operations on CNF counterparts. The answer will help determine the
power of SBSAT relative to existing systems. In this paper we study one of the
new operations called strengthening. We find that strengthening a pair of BDDs
with respect to each other is the same as resolving and subsuming clauses sets
corresponding to the BDDs in a particular way. Details are given in subsequent
sections.

2 Resolution and Subsumption

There are two principal operators used to manipulate a set of clauses: resolution
and subsumption. Resolution is a binary operation and results in the generation
of a clause that did not previously exist in the current clause set. Each generated
clause is implied by the given expression. Therefore, if the empty clause is
generated, the given expression can never have value 1. On the other hand, if
the empty clause cannot be generated, there is an assignment of variable values
which causes the expression to evaluate to 1. Two clauses are said to conflict in
variable v if literal v is in one clause and literal ¬v is in the other. Two clauses
can be resolved if they conflict in exactly one variable. A resolution step may
be performed on two clauses that can be resolved. The result is a clause called
the resolvent which contains all the literals of both clauses except the conflicting
ones.

Definition 3 Resolution Step: Given two clauses c1 and c2, one of which con-
tains literal v, the other literal ¬v, and such that there is no other literal that
appears in one clause and whose complement appears in the other. The result of
a resolution step on c1 and c2 with v as pivot is a clause containing all literals
in c1 and c2 except v and ¬v. That is, c1 ∪ c2 \ {v,¬v}.

For example, the clauses

{v1,¬v2, v3}, {v2, v3,¬v4}

can resolve on v2 and their resolvent (the result of a single resolution step) is

{v1, v3,¬v4}.

Subsumption is a binary operation that results in the elimination of a clause
from the clause set. The idea is to remove a clause which is implied by another.
Specifically, if a subset of the literals of a clause c are exactly those literals of
another clause, then c may be removed from the clause set.

We apply the Davis-Putnam Procedure [2], originally designed to determine
satisfiability of a set of clauses, to simplify a set of clauses. One step of the

Weaver 4

Davis-Putnam Procedure is called a Davis-Putnam step and is defined as fol-
lows:

Definition 4 Davis-Putnam Step: Given a propositional expression φv in con-
junctive normal form containing at least one clause with either literal v or literal
¬v. The result of a Davis-Putnam step on φv with respect to v is φv plus all
clauses resulting from all possible resolution steps on pairs of clauses in φv and
minus all clauses which contain v and all which contain ¬v. We use DPv(φv)
to denote the result of a Davis-Putnam step on expression φv with respect to v.

�
From Definition 4

DPv(φv) = (1)
{c1 ∪ c2 \ {v,¬v} : c1, c2 ∈ φv, v ∈ c1,¬v ∈ c2, 6 ∃w 6= v : w,¬w ∈ c1 ∪ c2}
∪ φv \ {c : c ∈ φv, v ∈ c or ¬v ∈ c}.

The implementation is done iteratively and it does not matter the order in which
you choose the clauses with which you use to resolve.

Example 5
Given: {{v1, v2}, {v1, v3}, {v1,¬v2, v3}, {¬v1, v2, v4}}
Generate resolvent: {v2, v4} from the resolution of underlined clauses.
Leaving: {{v1, v2}, {v1, v3}, {v1,¬v2, v3}, {¬v1, v2, v4}, {v2, v4}}
Generate resolvent: {v2, v3, v4} from the resolution of underlined clauses.
Leaving: {{v1, v2}, {v1, v3}, {v1,¬v2, v3}, {¬v1, v2, v4}, {v2, v4}, {v2, v3, v4}}
All possible resolutions have been done involving v1.
Removing all clauses that contain v1.
Output: {{v2, v4}, {v2, v3, v4}}

�

The Davis-Putnam Procedure is the result of applying Davis-Putnam steps
iteratively using a list of variables. Each iterative step can be applied in any
order and will always yield the same result. If the list of variables contains every
variable occurring in the given function then the Davis-Putnam Procedure can
be used to determine the satisfiability of the function. However, this approach
is too inefficient to be useful. Instead we will apply the procedure to groups of
selected subsets of clauses and variables. In fact, each clause subset we will be
interested in expresses a small BDD. We can do this because there is a close
relationship between BDDs and clause sets. First we describe BDDs in more
detail and then state this relationship more precisely.

Weaver 5

3 BDDs

Let V = {v1, v2, . . .} be a set of Boolean variables where indices have been
assigned arbitrarily. We say variable vi is of lower order than variable vj if and
only if i < j. A Boolean function is a mapping from assignments of values to
variables of V to {0, 1}. As stated, a BDD specifies a Boolean function. BDDs
are constructed by recursively using the form if v then a else b (referred to
below as ITE) where v is a variable2 from V and a and b are either Boolean
functions (subfunctions) or the constant 1 (for true), or the constant 0 (for false)
with the following restrictions: (i) variable v is of lower order than any of the
variables in a or b; and (ii) a and b are not logically equivalent. Each node of a
BDD corresponds either to an ITE, in which case it is labeled v, the conditional
variable of the ITE expression, or one of the constants 1 or 0, in which case it
is labeled 1 or 0, respectively. By (ii) and the fact that two logically equivalent
BDDs are identical, there is exactly one node labeled 1 and exactly one labeled
0. The root node corresponds to the highest level ITE in the recursion. Two
edges directed away from a node are incident to the nodes representing the then
and else subfunctions (a and b) of the ITE. The edge leading to subfunction a
is labeled 1 and the other edge is labeled 0. We speak of a path in a BDD as
a traversal of edges from root to a leaf (a terminal node labeled 1 or 0). By
(i) no variable label is encountered more than once while traversing a path. As
stated earlier, a path leading to 0 indicates a cylinder of assignments mapping
to 0. We can express this cylinder in terms of a set of literals: for each variable
label v encountered on the path, add literal v to the set if the edge taken away
from v’s node is labeled 0 and add literal ¬v if the edge is labeled 1. Below we
refer to such a set of literals obtained for a path p as a lemma representing p.

A BDD is a canonical representation of a function on a particular ordering
of input variables. For every clause set there is a logically equivalent BDD, but
for a particular BDD there may be many logically equivalent clause sets, one
of which can be constructed as follows: for each path p terminating at the 0
node, construct the lemma representing p; add the clause containing exactly
those literals to the clause set. The operation on a BDD P which yields all such
clauses will be referred to below as clause gathering on P.

4 Strengthening

Strengthening is a binary operation on two Boolean functions. Strengthening
makes use of the well-known operation called existential quantification: given
a Boolean function f containing a variable v, v may be existentially quantified
away from f by replacing f with f |v=0 ∨ f |v=1.

Definition 6 Existential Quantification: Given a Boolean function fv contain-
ing a variable v. The result of Existentially quantifying v away from fv is the

2Although v can be any Boolean function, for exposition purposes we restrict v to represent
a variable only. This is done without loss of generality by allowing, if necessary, v to be a new
variable (not contained in the original expression) which is equivalent to a Boolean expression.

Weaver 6

function fv|v=0∨fv|v=1. We use ∃vfv to denote the result of existentially quan-
tifying v away from fv. �

In what follows, we always suppose the two functions to be strengthened are
given as BDDs. Let P and Q denote two BDDs. To strengthen P with respect
to Q means (i) existentially quantify away all variables in Q that are not in
P forming a new BDD Q′′, then (ii) conjoin P and Q′′ using the logical and
operator forming a new BDD P ′. In other words we have:

Definition 7 Strengthening: P ′ = P ∧ ∃XQ, where P and Q are BDDs and
X is the set of variables occurring in Q but not in P . �

In SBSAT, strengthening is used during preprocessing to extract primitive
inferences. A primitive inference is a single literal v or ¬v, or a single equivalence
vi = vj that is implied by one BDD. When a primitive inference is found it is
immediately applied over the entire collection of input BDDs.

SBSAT applies strengthening in both directions. That is, given P and Q,
SBSAT strengthens P with respect to Q and replaces P with the result then
strengthens Q with respect to P and replaces Q with the result. When doing so
in what follows we refer to the strengthening of P and Q. This pairwise process
is iterated over the entire set of BDDs in the given input. This process allows
SBSAT to collect many primitive inferences which were originally implied by
two BDDs. In some cases strengthening even allows SBSAT to collect primitive
inferences which were originally implied by multiple BDDS.

Because of the close relationship between BDDs and clauses noted above we
can translate what is happening during the strengthening of P and Q to appli-
cations of the Davis-Putnam Procedure on clauses sets corresponding to P and
Q. We use the term φ to mean a CNF expression. In what follows we use the
symbol⇔ between different expressions of functions to mean logical equivalence.

Clause Sharing Method: Let φP and φQ be CNF expressions. Let X be the
set of variables in φQ but not in φP . The clause sharing method of φP with
respect to φQ is φP ′ = φP ∪DPX(φQ). �

Definition 8 Cross Product: Given two set of sets representations φ1 and φ2
of CNF expressions, the cross product of φ1 and φ2, denoted by × is given as

φ1 × φ2 = {c1 ∪ c2 : c1 ∈ φ1, c2 ∈ φ2}.

�

Remark 9 φ1 × φ2 represents the CNF expression which is the logical “or” of
the CNF expressions represented by φ1 and φ2.

Lemma 10 Let φv be a CNF expression containing at least one clause with
literal v. Then

φv|v=0 = {c \ {v} : c ∈ φv,¬v /∈ c}
and

φv|v=1 = {c \ {¬v} : c ∈ φv, v /∈ c}.

Weaver 7

Proof: Consider only the first part; the second part follows from a symmetric
argument. Given v has value 0, any clause containing the literal ¬v always has
value 1. Hence, removing such a clause from φv does not change the functionality
of φv. Moreover, any clause containing the literal v has precisely the same
functionality as that clause minus the literal v given v has value 0. Therefore,
removing clauses containing ¬v and literals containing v preserves the logical
equivalence of φv, given v has value 0. �

Lemma 11 Let φ be a CNF expression. Suppose c ∈ φ is a clause containing
two complementary literals. Then φ⇔ φ \ {c}.

Proof: Clause c is tautologous. �

Lemma 12 Let φ be a CNF expression. Suppose two clauses c1 and c2 are in
φ and c1 ⊂ c2. Then φ⇔ φ \ {c2}.

Proof: Clause c2 has value 1 whenever clause c1 does. �

The following is well known but we prove it here for expository purposes.

Lemma 13 Given a CNF expression φv containing no tautologous clauses,

∃vφv = DPv(φv).

The case where φv does not contain at least one clause with either literal v
or literal ¬v is trivial. Observe that the set of clauses represented by ∃vφv is
identical to the set of clauses represented by DPv(φv).

Proof: From Remark 9, Definition 6, and Lemma 10,

∃vφv = {c1 \ {v} : c1 ∈ φv,¬v /∈ c1} × {c2 \ {¬v} : c2 ∈ φv, v /∈ c2}.

Then, by Definition 8,

∃vφv = {c1 ∪ c2 \ {v,¬v} : c1, c2 ∈ φv,¬v /∈ c1, v /∈ c2}.

By Lemma 11, all tautologies can be removed to get

∃vφv = {c1 ∪ c2 \ {v,¬v} : c1, c2 ∈ φv,¬v /∈ c1, v /∈ c2, 6 ∃w 6= v : w,¬w ∈ c1 ∪ c2}. (2)

The right side of (2) can be split to get

∃vφv = (3)
{c1 ∪ c2 \ {v,¬v} : c1, c2 ∈ φv, v ∈ c1,¬v ∈ c2, 6 ∃w 6= v : w,¬w ∈ c1 ∪ c2}
∪ {c1 ∪ c2 \ {v} : c1, c2 ∈ φv, v ∈ c1,¬v /∈ c2, 6 ∃w 6= v : w,¬w ∈ c1 ∪ c2}
∪ {c1 ∪ c2 \ {¬v} : c1, c2 ∈ φv, v /∈ c1,¬v ∈ c2, 6 ∃w 6= v : w,¬w ∈ c1 ∪ c2}
∪ {c1 ∪ c2 : c1, c2 ∈ φv, v /∈ c1 ∪ c2,¬v /∈ c1 ∪ c2, 6 ∃w 6= v : w,¬w ∈ c1 ∪ c2}.

Weaver 8

By Lemma 12, {c1 ∪ c2 \ {v} : v ∈ c1,¬v /∈ c2} is removed from the right side of
(3) by {c2∪c2 : ¬v /∈ c2} (the last line of (3)) and {c1∪c2\{¬v} : v /∈ c1,¬v ∈ c2}
is removed due to {c1∪c1 : v /∈ c1} (also the last line of (3)). Thus (3) simplifies
to

∃vφv = (4)
{c1 ∪ c2 \ {v,¬v} : c1, c2 ∈ φv, v ∈ c1,¬v ∈ c2, 6 ∃w 6= v : w,¬w ∈ c1 ∪ c2}
∪ {c1 ∪ c2 : c1, c2 ∈ φv, v /∈ c1 ∪ c2,¬v /∈ c1 ∪ c2, 6 ∃w 6= v : w,¬w ∈ c1 ∪ c2}.

Also, by Lemma 12, {c1 ∪ c2 : c1 6= c2, v /∈ c1 ∪ c2,¬v /∈ c1 ∪ c2} in (4) can be
removed due to {c1 ∪ c1 : v /∈ c1,¬v /∈ c1} simplifying (4) to

∃vφv =
{c1 ∪ c2 \ {v,¬v} : c1, c2 ∈ φv, v ∈ c1,¬v ∈ c2, 6 ∃w 6= v : w,¬w ∈ c1 ∪ c2}
∪ {c : c ∈ φv, v /∈ c,¬v /∈ c, 6 ∃w 6= v : w,¬w ∈ c}.

Because φv contains no tautological clauses by hypothesis,

∃vφv =
{c1 ∪ c2 \ {v,¬v} : c1, c2 ∈ φv, v ∈ c1,¬v ∈ c2, 6 ∃w 6= v : w,¬w ∈ c1 ∪ c2}
∪ {c : c ∈ φv, v /∈ c,¬v /∈ c}.

Rewriting the last line gives

∃vφv = (5)
{c1 ∪ c2 \ {v,¬v} : c1, c2 ∈ φv, v ∈ c1,¬v ∈ c2, 6 ∃w 6= v : w,¬w ∈ c1 ∪ c2}
∪ φv \ {c : c ∈ φv, v ∈ c or ¬v ∈ c}.

The right side of (5) is identical to the right side of (1). The lemma follows. �

Remark 14 Let P and Q be BDDs. Let φP and φQ be CNF expressions such
that P ⇔ φP and Q⇔ φQ. Then P ∧Q⇔ φP ∪ φQ.

The following theorem is the main result. It describes strengthening in terms
of the Davis-Putnam Procedure and conjunction.

Theorem 15 Let P and Q be BDDs. Let φP and φQ be CNF expressions such
that P ⇔ φP and Q⇔ φQ. Let P ′ be the result of strengthening P with Q. Let
φP ′ be the result of applying the clause sharing method to φP and φQ. Then
P ′ ⇔ φP ′ .

Proof:

1. Let X be the set of variables in Q but not in P , note that X is also the set
of variables in φQ but not in φP . Let Q′′ = ∃XQ. Let φQ′′ = DPX(φQ).
By Lemma 13, Q′′ ⇔ φQ′′ .

Weaver 9

2. By definition of the clause sharing method, φP ′ = φP ∪ φQ′′ . By the
definition of strengthening, P ′ = P ∧Q′′. Since P ⇔ φP and Q′′ ⇔ φQ′′ ,
then by Remark 14, P ′ ⇔ φP ∪ φQ′′ and therefore P ′ ⇔ φP ′ . �

In Theorm 15, not only is Q′′ logically equivalent to φQ′′ , but it is identi-
cal to the set of clauses resulting from the application of the clause gathering
method on Q′′. This is not true for step 2 of the proof, φP ′ is not always iden-
tical to the set of clauses resulting from the application of the clause gathering
method on P ′, namely φP ′′ (as shown in the CNF counterpart to Figure 1).
However because φP ′ and φP ′′ are logically equivalent, a series of resolutions
and subsumptions can be done on either set to get a set of clauses that is iden-
tical to the other. Because BDDs are canonical if two BDDs represent the same
function, meaning they are logically equivalent, they are also identical. It fol-
lows that if we have two functions represented by CNF expressions which are
logically equivalent, their respective BDDs are identical and thus we can have
a complete characterization of strengthening in CNF terms.

Weaver 10

CNF counterpart to Figure 1:

Let φP and φQ be the results of clause gathering on P and Q
respectively. Then,

φP = {{¬v2, v4, v5}, {v2, v3}}
φQ = {{v1}, {¬v1, v3, v5}, {¬v1,¬v3, v4}}
φQ′′ = DPv1(φQ) = {{v3, v5}, {¬v3, v4}}
φP ′ = φP ∪ φQ′′ = {{¬v2, v4, v5}, {v2, v3}, {v3, v5}, {¬v3, v4}}.

Let φP ′′ be there result of clause gathering on P ′. Then,
φP ′′ = {{¬v2,¬v3, v4}, {¬v2, v3, v5}, {v2,¬v3, v4}, {v2, v3}}

Figure 1: Strengthening two BDDs P and Q

Weaver 11

References

[1] Bryant, R. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35(8):677-691, 1986.

[2] M. Davis and H. Putnam. A computing procedure for quantification theory.
JACM, July 1960.

[3] Dransfield, M., J. Franco, J.S. Schlipf, W.M. Vanfleet, J. Ward, and S.
Weaver. A state-based, BDD-based Satisfiability Solver. Submitted to
Annals of Mathematics and Artificial Intelligence.

[4] Freeman, J.W. Improvements to Propositional Satisfiability Search Algo-
rithms. Ph.D. dissertation in Computer and Information Science, Univer-
sity of Pennsylvania, 1995.

[5] Marques-Silva, J.P., and K.A. Sakallah. GRASP - A New Search Algorithm
for Satisfiability. Technical Report CSE-TR-292-96, Department of Elec-
trical Engineering and Computer Science, University of Michigan, 1996.

[6] Moskewicz, M.W., C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Engineer-
ing a (Super?) Efficient SAT Solver. In Proceedings of the 38th ACM/IEEE
Design Automation Conference, ACM, New York, 2001.

[7] Zhang, H. SATO: an Efficient Propositional Prover. In Proceedings of
the International Conference on Automated Deduction (CADE’97), 1249,
Lecture Notes in Artificial Intelligence, 1997.

