
Morehead Electronic Journal of Applicable Mathematics
Issue 4 — COSC-2005-01
Copyright c©2005

Implementing Lazy Streams in C++

David Renz and Mike Borowczak1

University of Cincinnati, Cincinnati, OH 45219

Abstract

We show that the ability of a lazy language, like Haskell, to allow
procedures to lazily generate a stream of tokens can be added to ANSI
C++ merely by writing code in a style which uses classes to implement
function closures. Coding in this style provides an easy way to handle
infinite streams in C++, results in application layer implementations that
closely resemble a problem’s specification, and can be applied to a wide
variety of problems in computer science.

1 Introduction

A stream is formally defined as a sequence of tokens x1, x2, ..., xn that are
read in increasing order of their indices [GMMO00]. Many applications
such as e-mail, internet radio, and news tickers either produce or consume
a stream. Tokens in a stream have well-defined types (e.g. integers,
Boolean values, strings, user defined types, etc.) that are appropriate for
the application making use of the stream. A stream may be thought of
as connecting a process which produces tokens, called a producer, with a
process which consumes those tokens, called a consumer. By convention,
we call such a connection a communication link and only allow tokens
to travel in one direction over a link: from producer to the consumer.
Observe that it is possible for several communication links to exist from
a single producer, that several links can exist to a single consumer, and
that a consumer can also be a producer.

A producer may be categorized as eager or lazy, depending on the
way it is implemented. An eager producer attempts to generate all the
tokens in its stream before the consumer sees any one of them. On the
other hand, a lazy producer generates only those tokens needed to satisfy
the demands of a consumer when the consumer makes those demands.
In what follows, a stream of tokens generated by a lazy producer will be
referred to as a lazy stream and a stream of tokens produced by an eager
producer will be referred to as an eager stream.

1This work was done by David Renz and Mike Borowczak as an honors project under the
supervision of Dr. John Franco.

1

Renz and Borowczak 2

Many familiar programming languages only natively support either
lazy or eager streams. Some, such as Scheme, have the machinery (namely
lambda in the case of Scheme) which allows a programmer to build lazy
streams. Lazy streams are a standard part of some functional program-
ming languages like Haskell. But, C++ is designed with eager streams in
mind at the application layer.

Performing computation with lazy rather than eager streams has at
least two benefits. First, a lazy stream is capable of containing an in-
finite number of tokens. Second, no computational effort is expended
until a token is demanded by a consumer. The value of these benefits
becomes particularly evident when a consumer extracts a very large, pos-
sibly infinite, number of tokens from multiple producers in an order that
dependents upon the comparison between first token of the stream gen-
erated by each producer. This situation typically results from a recursive
specification and requires a way to coordinate the order in which each
token is evaluated.

Hamming’s problem [Ric97] is a classic illustration of the power of lazy
streams, and we use it as our primary example to illustrate their benefits.
Hamming’s problem was originally to find the infinite sequence of integers
whose prime factors are all taken from the list [2, 3, 5]. The first ten
tokens in this Hamming sequence are 2, 3, 4, 5, 6, 8, 9, 10, 12, and 15. In
this paper, we extend Hamming’s problem to mean finding the Hamming
sequence for any list of prime integers [Feo92]. For example, the first ten
tokens in the Hamming sequence for the primes list [3, 5, 11] are 3, 5, 9,
11, 15, 25, 27, 33, 45, and 55. For simplicity, we will assume that any
given list of primes is in increasing order.

We can specify a Hamming sequence in terms of the multiplication
of a lazy stream with an integer and the merging of two lazy streams
of increasing integers. In this example, we will only consider streams of
integer tokens, called integer streams, so we will write streams as comma
separated lists of integers surrounded by brackets (this says nothing about
when the tokens are generated; if anything, it just lists all the tokens
of a stream). Let times be a function that multiplies all tokens of an
integer stream by a given integer. That is, times takes an integer and a
lazy integer stream as arguments and returns a lazy integer stream whose
tokens are each the product of the given integer and a token from the
input stream. For example, using the notation of Haskell,

times (3) ([1, 2, 3, 4])

returns [3, 6, 9, 12]. Let merge be a function that joins two increasing lazy
streams into one increasing lazy stream. That is, merge takes two lazy
integer streams as arguments and returns a lazy integer stream containing
all of the tokens of the two input streams in increasing order. For example,

merge ([3, 6, 9, 12]) ([5, 10, 15, 20])

returns [3, 5, 6, 9, 10, 12, 15, 20].
The Hamming sequence for any given list of primes may be defined

recursively as the concatenation of the first integer in the given list of
primes with the merge of two other sequences: the first sequence is the
times of all of the integers in the Hamming sequence of the given list

Renz and Borowczak 3

and first integer in the given primes list and the second sequence contains
all of the integers in the Hamming sequence for the given primes list
excluding the list’s least valued integer. Both a Haskell implementation
and a formal recursive specification of a Hamming sequence, as described
above, are given in Figure 1.1.

Figure 1.1:

hamming [] = []
hamming p = head p : merge (times (head p) (hamming p)) (hamming (tail p))

where

times (a) [] = []
times (a) (b) = (a * (head b) : times (a) (tail b))

merge [] [] = []
merge (a) [] = a
merge [] (b) = b
merge (a) (b) = if ((head a) < (head b)) then ((head a) : merge (tail a) (b))

else ((head b) : merge (a) (tail b))

The syntax of the Haskell code in Figure 1.1 is easily interpreted.
The Haskell functions times and merge are defined over more than one
line. Each line has an equals sign (=). On the left side of any equals
sign is a pattern that corresponds either to the general or special cases
of the argument patterns accepted by the function. When the pattern
of the accepted arguments matches the pattern specified on the left side
of one of the function’s specification lines, the function call evaluates to
the expression stated on the right of that line’s equals sign. For example,
if a hamming function receives a [] (signifying an empty list) as input, it
evaluates to a []; if merge receives an empty list and a non-empty list as
arguments, it evaluates to the non-empty list (there are two lines for this
special case).

Some special symbols and functions are used to denote familiar list
operations which are adapted to streams. The function head takes one
stream argument and returns the first token of that stream. The func-
tion tail takes one stream argument and returns a stream identical to
the given stream minus its first token. The symbol : denotes a binary
operation that means concatenate the token on the left side of : with
the stream on the right side (that is, insert the left side token into the
beginning of the right side stream). The symbols *, <, if, then, else all
have the obvious meaning. Thus, the second line of the specification of
hamming, namely the line with hamming p to the left of the equals, means
for non-empty primes list p, concatenate the first integer of p with the
merge of the stream obtained by multiplying the first integer of p by the
integers of the Hamming sequence for p and the Hamming sequence for
p minus the first integer of p. In a lazy language, when hamming p is
invoked, the first token is evaluated (by head p) and four lazy streams
are created: the first stream’s producer is due to the call hamming p on
the right side of the equals, a second stream’s producer is due to the call
hamming (tail p), the producer due to the call to times consumes tokens
from the first stream, and the producer due to the call to merge consumes
tokens from the times and second streams.

Renz and Borowczak 4

The solution described in Figure 1.1 produces a complex network of
increasing integer streams, depicted as nodes in Figure 1.2. Each node
consists of a multiplier, a list of prime integers, and a first token. This
is enough information to describe an infinite integer stream whose tokens
are a Hamming sequence, defined by the node’s primes list, all multiplied
by the node’s multiplier. Each node with a non-empty primes list has two
dependencies, called descendent nodes. A node with an empty primes list
has no descendents. Each dependency is represented in the Figure by a
directed arc drawn from a descendent node. The tokens of a node’s stream
are the merge of the tokens of the streams of its descendents concatenated
with the node’s first token. The stream of the root node is the Hamming
sequence for [3, 5, 11], the stream of the root node’s left descendent is 3
times the Hamming sequence for [3, 5, 11], the stream of the root node’s
right descendent is the Hamming sequence for [5, 11], and so on.

Figure 1.2 directly depicts code relationships. The arcs represent func-
tion calls. Each descendent node represents a producer and the node on
the other end of an arc represents a consumer.

Figure 1.2:

A C++ function defined by the specification in Figure 1.1 to compute
a Hamming sequence cannot produce the same results as the Haskell im-
plementation. In fact, once such a C++ function is invoked, it would
never terminate because a C++ function eagerly attempts to completely
evaluate the first term it encounters in an expression. The dotted arcs in
Figure 1.2 show how an eager C++ implementation of the specification
for a Hamming sequence in Figure 1.1 always calls the producer function
represented by each node’s left descendent node and always neglects the
producer represented by the right descendent node. The Haskell imple-
mentation works because it looks at both descendents and only evaluates
what is needed to generate the next token.

In this paper, we add some of the power of lazy streams to C++ merely
by writing code in a certain style. The resources needed to implement lazy
streams are already present in ANSI C++ without the aid of libraries like
FC++ [MS03]. The function closures needed to implement lazy streams
are easily modeled in C++ by enclosing a function and its local envi-
ronment variables as members of a class object [Luf95]. Coding in this

Renz and Borowczak 5

style provides an easy way to handle infinite streams in C++, results in
application layer implementations that closely resemble a problem’s spec-
ification, and can be applied to a wide variety of problems in computer
science.

2 Implementation

In this section, we develop the mechanisms to implement lazy streams in
C++ and provide examples of how to apply them. For simplicity, we chose
to implement lazy streams that are limited to generating tokens that are
integers.

2.1 A Stream Class

The abstract class Stream in Figure 2.1 is inherited by classes that are
defined in a consistent style to facilitate the lazy production of a stream of
tokens. Classes derived from Stream are referred to as stream classes, and
an instance of a stream class is referred to as a stream object. A stream
object is a lazy producer.

Figure 2.1:

class Stream {

public:

int head;

bool isEmpty;

virtual Stream *tail() = NULL;

Stream() {isEmpty = false;}

};

Inheriting the Stream class provides instances of every stream class
with certain services. Each stream object has a data member, head, which
is declared to be an integer and contains the stream’s first token. head’s
value corresponds to the value returned by Haskell’s head function when
given a stream as input. Furthermore, it is head’s data type that limits
stream objects derived from this Stream class to generating tokens that
are integers. General stream objects capable of generating tokens of any
type are possible if head’s data type is changed to void *. We will demon-
strate the use of such a generalized Stream class in the last example of
Section 3. Each stream object also has a Boolean data member, isEmpty.
When set to true, isEmpty indicates that a stream object is no longer
able to produce new tokens and will be referred to as a null stream. Since
a stream object’s constructor will always decide isEmpty’s value (which is
usually false upon creation), initializing isEmpty to false can consider-
ably shorten a stream class’s constructor code. Each stream object also
has a member function, tail(), which is declared a pure virtual function
because it must be explicitly defined for each stream class to produce the
remainder of a stream’s tokens. Invoking a stream object’s tail() corre-
sponds to the action performed when Haskell’s tail function is given a
stream as input.

Renz and Borowczak 6

The way a stream class’s constructor and tail() are implemented dif-
ferentiates that stream class from other stream classes, but the constructor
and tail() have the same purpose in all stream implementations. When
any new stream object is created, its constructor always eagerly performs
some computation to generate its head, makes sure the stream has not
become null, and saves any information needed by tail() to produce the
remainder of the stream’s tokens. Invoking tail() returns a reference to
a new stream object whose constructor eagerly generates the next token.
The production of tokens is then suspended until the consumer demands
the next token.

It should be noted that, unlike a Haskell stream, a stream object is
not fully lazy. In Haskell, a stream’s first token is not produced until
a consumer demands it. However, a stream object’s constructor always
eagerly generates its stream’s first token when the object is created.

The class hierarchy that results from each stream class inheriting
Stream allows a stream class’s instance to be interchangeable with any
other stream class’s instance that produces tokens of the same data type.
This is possible because declaring tail() to be a pure virtual function
and casting stream objects to type Stream enables C++ to ensure that
the correct stream object’s tail() is always called when a consumer de-
mands the stream’s next token. To a consumer, it is not important how
a stream class’s constructor and tail() are implemented as long as the
constructor always generates a new value for head and invoking tail()

always returns a new stream object.

2.2 A Successor Stream Class

The Successor stream class in Figure 2.2 is a simple example of how a
lazy stream may be implemented. A Successor stream object is solely a
producer of tokens that could, in theory, generate every integer starting
from a given integer to infinity in increasing order.

Figure 2.2:

class Successor : public Stream{

public:

Successor(int i){

head = i;

}

Stream *tail(){ return new Successor(head + 1); }

};

We will use the function defined in Figure 2.3 as a consumer for all of
the examples in Section 2. It consumes up to twenty tokens generated by
any given integer stream object. After head is printed to the screen, the
next token is demanded by s->tail(). This returns a reference to a new
stream object, replacing the current stream object referenced by s. The
generation of tokens is then suspended until the for loop’s next iteration.

Figure 2.3:

void consumer(Stream *s){

Renz and Borowczak 7

for (int i = 0; (i < 20 && !s->isEmpty); i++){

cout << s->head << endl;

s = s->tail();

}

}

The above consumer illustrates one drawback to programming in this
style: the need for garbage collection. When the consumer replaces s with
the stream object’s reference returned by s->tail(), there is often no
longer any reference to the object that s had pointed to, but the operating
system is unable to reclaim the object’s memory. We did not attempt to
provide garbage collection because we are only interested in the concept
of programming in this style.

Figure 2.4 shows how a new Successor stream would be created and
passed to the consumer function in Figure 2.3, where its first twenty tokens
are extracted.

Figure 2.4:

Stream *s = new Successor(1);

consumer(s);

2.3 A Times Stream Class

The Times steam class in Figure 2.5 implements what could be considered
a stream filter. A Times stream object produces a sequence whose tokens
are each the product of a token consumed from an input stream object
and a given integer multiplier. A Times stream object is null if its input
stream object is null and performs a task similar to that of the Haskell
times function defined in Figure 1.1.

Figure 2.5:

class Times : public Stream {
Stream *inStream;
int multiplier;

public:
Times(int n, Stream *s) {

multiplier = n;
inStream = s;

isEmpty = inStream->isEmpty;
if (!isEmpty) head = multiplier * inStream->head;

}

Stream *tail() { return new Times(multiplier, inStream->tail()); }
};

Figure 2.6 creates a new Times stream object, t, that takes a Successor

stream object as input and passes t to the consumer function from Figure
2.3.

Figure 2.6:

Stream *s = new Successor(1);

Stream *t = new Times(5, s);

consumer(t);

Renz and Borowczak 8

2.4 A Merge Stream Class

The Merge stream class implemented in Figure 2.7 joins two increasing
integer streams. It produces an increasing sequence whose tokens are
extracted from two input stream objects. A Merge stream object is null
when both of its input stream objects are null and performs a task similar
to the five-line Haskell merge function defined in Figure 1.1.

Figure 2.7:

class Merge : public Stream {
Stream *branch1, *branch2;

public:
Merge (Stream *a, Stream *b) {

if (a->isEmpty && b->isEmpty) {
branch1 = a;
branch2 = b;

isEmpty = true;
} else if (b->isEmpty) {

branch1 = a;
branch2 = b;

} else if (a->isEmpty) {
branch1 = b;
branch2 = a;

} else if (a->head < b->head) {
branch1 = a;
branch2 = b;

} else {
branch1 = b;
branch2 = a;

}
head = branch1-> head;

}

Stream *tail() { return new Merge(branch1->tail(), branch2); }
};

Figure 2.8 creates a Merge stream object, m, that joins two Times

stream objects, each of which consume tokens from different Successor

stream objects, and passes m to the consumer.

Figure 2.8:

Stream *s1 = new Successor(1);

Stream *t1 = new Times(2, s1);

Stream *s2 = new Successor(1);

Stream *t2 = new Times(3, s2);

Stream *m = new Merge(t1, t2);

consumer(m);

The diagram in Figure 2.9 illustrates the resulting relationship between
the Successor, Times, and Merge stream objects. The solid boxes rep-
resent stream objects, and the arrows connecting them are directed from
producer stream objects to consumer stream objects. The ovals enclosed
in the large dotted boxes represent the first few of the infinite number of
tokens that are produced by the Times and Merge stream objects. The
arrows that connect the tokens show the order in which the tokens pro-
duced by the Times stream objects are put into the sequence produced by
Merge.

Renz and Borowczak 9

Figure 2.9:

Figure 2.10 creates a single Successor stream object that is split into
two separate streams by producing tokens for two consumers. Initially,
both Times and Merge demand a token from the same Successor stream
object. However, two separate, but identical, stream objects are created
as the Successor stream object’s tail() is invoked by each consumer.

Figure 2.10:

Stream *s = new Successor(1);

Stream *t = new Times(2, s);

Stream *m = new Merge(t, s);

consumer(m);

Figure 2.11 shows the relationship between the Successor, Times, and
Merge stream objects. As in Figure 2.9, the small solid boxes represent
stream objects, and the arrows connecting them are directed from a pro-
ducer stream object to a consumer stream object. The arrows that connect
the ovals show the order in which the tokens extracted from the Times and
Successor stream objects are put into the sequence produced by Merge.

Renz and Borowczak 10

Figure 2.11:

2.5 A Hamming Stream Class

To define a stream class whose instances are capable of generating Ham-
ming sequences, it is convenient to represent a list of prime integers as a
lazy stream. To do this, we define the List stream class in Figure 2.12
to be a bounded stream that holds a list of integers and knows how many
items the list contains. A List class stream object takes an array of inte-
gers and the size of that array as input and produces a lazy stream whose
tokens are the elements of the array. A List stream object is null when
it contains no more items.

Figure 2.12:

class List: public Stream {

int *tokens;

int size;

public:

List(int *t, int s){

tokens = t;

size = s;

if (size > 0)

head = tokens[0];

else

isEmpty = true;

}

Stream *tail(){ return new List(&tokens[1],(size - 1)); }

};

The Hamming stream class, defined in Figure 2.13, implements a stream
object that generates a Hamming sequence for any given list of prime in-
tegers. This stream object’s implementation is similar to Figure 1.1’s
Haskell specification for generating a Hamming sequence. Like the defin-
ition of the Haskell hamming function, a Hamming stream object is recur-

Renz and Borowczak 11

sively defined to consume tokens from Merge and Times stream objects
that take Hamming stream objects as input. Note that the code to the
right of the colon in the second line of the Haskell hamming function cor-
responds to the tail() function of the Hamming stream class. Moreover,
notice that in Haskell’s hamming, a new instance of the hamming function
with the same primes list must be created for input to times. However,
the Hamming stream object’s tail() can simply pass the Times stream
object’s constructor the this pointer because, as we showed in the sec-
ond Merge stream example, a single stream object may produce multiple
independent and identical stream objects.

Figure 2.13:
class Hamming : public Stream {

Stream *p;
public:

Hamming(Stream *givenPrimes) {
p = givenPrimes;
isEmpty = p->isEmpty;
if(!isEmpty) head = p->head;

}

Stream *tail() {
return new Merge(new Times(p->head, this),new Hamming(p->tail()));

}
};

Figure 2.14 shows the creation of a new Hamming stream object which
is passed a List stream object. Passing the Hamming stream object to the
consumer function in Figure 2.3 will result in the generation of the first
twenty tokens in the Hamming sequence for the primes list [3, 5, 11].

Figure 2.14:

int primes[3]= { 3, 5, 11 };

Stream *h = new Hamming(new List(primes, 3));

consumer(h);

3 Further Examples

This section provides examples that highlight the versatility of using
streams in the style we have presented by implementing stream objects
as alternatives to more conventional C++ solutions. As examples, we
implement stream objects that compute Stirling numbers of the second
kind and perform a topological sort.

3.1 Stirling Numbers of the Second Kind

A Stirling number of the second kind, denoted S(m, n), is the number of
ways to partition a set of n elements into m nonempty sets [Wei99] and
is recursively defined as:

S(m, n) = S(m-1, n-1) + m * S(m, n-1) [Dic03]

A Stirling2 stream object implemented in Figure 3.1 is, in theory,
capable of producing all of Stirling numbers of the second kind starting
from some initial values of m and n.

Renz and Borowczak 12

Figure 3.1:

class Stirling2 :public Stream{

public:

int m,n;

int term1, term2;

Stirling2(int x, int y) {

m = x;

n = y;

if (m == n){

head = 1;

m = 0;

++n;

} else if (m == 1){

head = 1;

} else if (m == 0 || n < m){

head = 0;

} else {

term1 = (new Stirling2(m-1, n-1))->head;

term2 = (new Stirling2(m, n-1))->head;

head = term1 + m * term2;

}

}

Stream *tail(){ return new Stirling2(m+1, n); }

};

Figure 3.2 defines a consumer function that displays a table of Stirling
numbers of the second kind using a Stirling2 stream object whose initial
values of m and n are 1. Sample output produced by the consumer is
provided in Figure 7.1 of the Appendix.

Figure 3.2:

void consumer() {

Stream *s = new Stirling2(1,1);
cout << "n/m";
for (int col = 1; col <= 8; col++) cout << ’\t’ << col << " ";
cout << endl;
for (int n = 1; n <= 8; n++){

cout << n << " \t";
for (int m = 1; m <= n; m++){

cout << s->head << ’\t’;
s = s->tail();

}
cout << endl;

}
}

3.2 Topological Sort

A topological sort creates a total ordering from a partial ordering. The
directed acyclic graph (DAG) in Figure 3.3 represents a partial ordering.
Each directed arc from vertex v1 to v2 defines a dependency. A topological
sort would order the DAG’s vertices such that v2 must show up later in
the total ordering than v1. One possible result of topologically sorting the

Renz and Borowczak 13

partial ordering represented by this DAG would be to order vertices as
follows: d, c, a, e, f , b. This is only one possible solution because more
than one correct total ordering for a partial ordering may exist.

Figure 3.3:

The Topo stream class implemented in Figure 3.4 performs a topologi-
cal sort on a given partial ordering of Vertex objects. Each Vertex object
represents a vertex of a DAG and is defined by the class in Figure 7.4 of
the Appendix. An array of pointers to Vertex objects may be considered
a partial ordering because each Vertex object also contains an array of
pointers to Vertex objects, called depends, that it is dependent upon. A
Topo stream object takes an array of pointers to Vertex objects and the
size of the array as input and lazily produces a sequence whose tokens
are pointers to Vertex objects. These objects are extracted in an order
corresponding to the total ordering of the DAG’s vertices. If the input is
not a partial ordering (i.e. at least two Vertex objects depend upon each
other), an error message is displayed and the computation is terminated.
A Topo stream object becomes null when all of the Vertex objects in its
given array have been extracted.

The Topo stream class must inherit a generalized Stream class because
the tokens that it produces are pointers to Vertex objects. Figure 7.2
provides a Stream class in which head’s data type is changed to void *.
This allows instances of stream classes derived from this new Stream class
to generate tokens that are pointers to objects of any data type.

Figure 3.4:
class Topo :public Stream {

Vertex **vertices;
int nOfVerts;

public:
Topo (Vertex **v, int n) {

vertices = v;
nOfVerts = n;
Stream *current;

for (int i = 0; i < nOfVerts; i++){

if (vertices[i]->error){

cout << "\nA cycle was found" << endl;
exit(1);

}

Renz and Borowczak 14

if (vertices[i]->done) continue;

vertices[i]->error = true;
current = new Topo(vertices[i]->depends, vertices[i]->ndepends);
vertices[i]->error = false;

if (current->isEmpty) current->head = (void *)vertices[i];

head = current->head;
((Vertex*)head)->done = true;
return;

}
isEmpty = true;

}

Stream *tail() { return new Topo(vertices, nOfVerts); }
};

The consumer function in Figure 3.5 creates a new Topo stream object
from information in a given formatted file that contains the information
needed to represent a DAG, translates this file into an array of pointers
to Vertex objects, and displays the a total ordering of the represented
DAG. A sample input file modeled after Figure 3.3’s DAG is provided in
Figure 7.3. Figure 7.5 defines functions used by this consumer function to
translate the input file into an array of pointers to Vertex objects, called
vertices.

Figure 3.5:

void consumer(char * fileName){

int nOfVerts = 0;

fstream fin(fileName, ios::in);

if (!fin){

cout << "No such file: " << fileName << endl;

exit(0);

}

nOfVerts = getNumVertices(fileName);

Vertex **vertices;

vertices = setUpArray(fileName, nOfVerts);

setUpDependencies(fileName, nOfVerts, vertices);

Stream *s = new Topo(vertices, nOfVerts);

while (!s->isEmpty){

cout << ((Vertex *)(s->head))->ident << endl;

s = s->tail();

}

}

Renz and Borowczak 15

4 Conclusions

We have presented a style of programming in C++ that allows a producer
to lazily generate a stream of tokens. Not only does this simple style
provide an easy way to handle infinite streams in C++, but it also may
enable the implementation of a problem’s solution to more closely resemble
its specification than a non-stream-based C++ implementation. In the
future, it would be interesting to implement the solutions to other classic
computer science problems in the style that we have presented.

5 Acknowledgments

We would like to thank Dr. John Franco for the motivation to write this
paper and all of his guidance, suggestions, and thorough proofreading.

6 References

[Dic03] R. Dickua. The Math Forum. 2003. “Stirling numbers of the
second kind.” Accessed April, 12 2003.
http://mathforum.org/advanced/robertd/stirling2.html.

[Feo92] J. T. Feo, editor. “A Comparative Study of Parallel
Programming Languages: The Salishan Problems (Special Topics
in Supercomputing, Vol. 6).” North-Holland, 1992.

[GMMO00] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
“Clustering Data Streams.” In Proceedings of the IEEE Annual
Symposium on Foundations of Computer Science (FOCS). pp 359 -
366. 2000.

[Luf95] K. Lufer. “A Framework for Higher-Order Functions in C++.”
In Proceedings of the USENIX Conference on Object Oriented
Technologies (COOTS). pp 103 - 116. 1995.

[MS03] B. McNamara and Y. Smaragdakis. August 7, 2003. “FC++:
Functional Programming in C++.” Accessed August 17, 2003.
http://www.cc.gatech.edu/ yannis/fc++/.

[Ric97] M. Richards. “The MCPL Programming Manual and User
Guide.” University of Cambridge, Computer Laboratory. October
1, 1993.

[Wei99] E. W. Weisstein. Wolfram Research. 1999. “Stirling numbers
of the Second Kind.” Accessed April 12, 2003.
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html.

Renz and Borowczak 16

7 Appendix

Figure 7.1: Stirling Sample Output:

n/m 1 2 3 4 5 6 7 8

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1

8 1 127 966 1701 1050 266 28 1

Figure 7.2: A General Stream Class:

class Stream {

public:

void *head;

bool isEmpty;

virtual Stream *tail() = NULL;

Stream() {isEmpty = false;}

};

Figure 7.3: A Sample Input File:

e a f c d b -

1 -

3 4 -

1 3 -

4 -

-

0 4 -

[Note: Spacing is very important]

Figure 7.4: A Vertex Class:

class Vertex {

public:

Vertex **depends; // Pointers to dependent objects

int ndepends; // Number of dependent objects

bool error; // Used to find a cycle

bool done; // Indicates if object has been extracted

char *ident; // String identifying this object

Vertex(char *id) {

ident = new char[strlen(id)+1];

strcpy(ident, id);

ndepends = 0;

Renz and Borowczak 17

depends = NULL;

error = false;

done = false;

}

// copy constructor

Vertex(const Vertex& aVertex){

ident = new char[strlen(aVertex.ident)+1];

strcpy(ident, aVertex.ident);

ndepends = aVertex.ndepends;

depends = aVertex.depends;

error = aVertex.error;

done = aVertex.done;

}

// Set the dependencies list - constructed from an input file

void requires(Vertex **dependencies, int ndep) {

depends = dependencies;

ndepends = ndep;

}

};

Figure 7.5: Functions to Read Input File:

// Counts the number of objects in an input file
int getNumVertices(char *fileName) {

fstream fin(fileName, ios::in);
char *token = new char[1024];
int count = 0;
while (fin >> token){

if (token[0] == ’-’) break;
++count;

}
return count;

}

// Inserts the new Vertex objects into an arry
Vertex **setUpArray(char *fileName, int size) {

fstream fin(fileName, ios::in);
char *token = new char[1024];
Vertex **vertices = new Vertex *[size];
for (int i = 0; i < size; i++){

fin >> token;
vertices[i] = new Vertex (token);

}
return vertices;

}

// Populates each Vertex object’s dependency array
void setUpDependencies(char *fileName, int size, Vertex **vertices) {

fstream fin(fileName, ios::in);
fstream::pos_type mark;
char *token = new char[1024];
Vertex **dependents;
int ndep = 0;
int index = 0;

Renz and Borowczak 18

while (fin >> token) {
if (token[0] == ’-’) break;

}
for (int i = 0; i < size; i++) {

ndep = 0;
mark = fin.tellg(); // Saves the file cursors spot
while(fin >> token){

if (token[0] == ’-’) break;
ndep++;

}
dependents = new Vertex*[ndep];
fin.seekg(mark, ios::beg);

for (int j = 0; j < ndep; j++) {
fin >> token;
for (int k = 0; k < size; k++) {

if (k == atoi(token)) {
dependents[j] = vertices[k];
break;

}
}

}
vertices[i]->requires(dependents, ndep);
fin >> token;

}
}

