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Abstract: The political argument over whether to extend Interstate 69 through
southwestern Indiana has been a long and difficult one. This article presents
a mathematical model of the Indiana highway system, using weighted edges in
a network and a weighted adjacency matrix. As explained in the article, the
principal eigenvector of this adjacency matrix provides a method for rating how
accessible the various cities are. In the model we “build” the proposed interstate
highway and examine the resulting changes in accessibility.

Introduction

Since the late 1980s there has been a political debate in Indiana on whether a
highway should be built through the southwest portion of the state, connecting
the cities of Indianapolis, Bloomington, and Evansville. There is no interstate
highway through this area, and proponents of the highway suggest that this has
hindered the economic growth of these cities and of the rest of the region. They
propose extending I-69 — which presently runs from Port Huron, Michigan to
Indianapolis — as far as Evansville.

However, there are serious environmental issues involved. Nearly one hun-
dred miles of new roadway would be required, passing through forests, wetlands,
and park lands. The new highway would intersect prime farm land and lime-
stone quarries. Any increase in traffic would exacerbate automobile emissions
problems in Indianapolis and Evansville. The decision is thus a difficult one.

Changes in highway access clearly would affect the economies of the cities.
Network theory and linear algebra provide one way to assess the influence of
transportation links. Each city can be viewed as a node in a network and the
highways as edges between nodes. An adjacency matrix records how the cities
are connected. A certain eigenvector of this matrix then can be used to rate
the “accessibility” of each node. (This method is discussed in Straffin [3], who
used it to analyze villages and river ways in twelfth century Russia.) In our
model of Indiana and its highway system, the proposed interstate highway can
be built mathematically. This will give some indication of the changes it might
cause. To improve the accuracy of the model, the connections will be weighted
according to the type of highway involved. The volume of traffic is considerably
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different on different types of highway, and this can be reflected in the adjacency
matrix.

The Network Model

The transportation system in Indiana is a collection of cities connected by trans-
portation routes. These routes can be highways, railroads, airways, or water-
ways. We focus on highways and classify them into three types: the interstate,
the four-lane, and the two-lane highways; see Figure 1. The accessibility of a
city depends not only on the number of highways which run through it, but also
on the classification of these highways. (This simplified map shows only the
largest highways. In many instances there are parallel highways which must be
included in our calculations.)

The cities and the highways connecting them can be viewed as a network of
nodes and edges. This can be represented by an adjacency matrix, defined as

aij =
{

1 if nodes i and j are joined by an edge
0 if nodes i and j are not joined by an edge

Further, we define aii = 1, so that each city is considered to be connected
to itself. This will be important later when we interpret a matrix calculation.

Figure 1: Major cities and highways in Indiana
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For the state of Indiana we selected the ten major cities, as measured by
total personal income. These are, in decreasing order: Indianapolis, Gary, Fort
Wayne, Evansville, South Bend, Lafayette, Terre Haute, Bloomington, Colum-
bus, and Richmond (United States Bureau of Economic Analysis [4]). Since
most of these cities are connected to highways leaving the state, we added a
node for “The Rest of the World”. Here is the resulting adjacency matrix,
which we call M :



B. C. E. F.W. G. I. L. R. S.B. T.H. Rest
Bloomington 1 1 1 0 0 1 0 0 0 1 0
Columbus 1 1 0 0 0 1 0 0 0 0 1
Evansville 1 0 1 0 0 0 0 0 0 1 1
Fort Wayne 0 0 0 1 0 1 0 1 1 0 1
Gary 0 0 0 0 1 0 1 0 1 1 1
Indianapolis 1 1 0 1 0 1 1 1 1 1 1
Lafayette 0 0 0 0 1 1 1 0 0 0 0
Richmond 0 0 0 1 0 1 0 1 0 0 1
South Bend 0 0 0 1 1 1 0 0 1 0 1
Terre Haute 1 0 1 0 1 1 0 0 0 1 1
The Rest 0 1 1 1 1 1 0 1 1 1 1



Notice the large number of connections to Indianapolis, which calls itself the
“Crossroads of America”. This suggests that Indianapolis should have a high
accessibility rating. As we will see, this is indeed the case.

Thus far the three types of highway have not been reflected in the model.
One way to account for the differences is to weight the edges according to the
traffic flow on each type of highway. Using the annual daily traffic flow maps
from the Indiana Department of Transportation [2], we found that the mean
daily traffic flows were 36,435 vehicles traveling each Indiana interstate per day,
17,848 vehicles traveling each four-lane highway, and 10,612 vehicles traveling
each two-lane highway. To our surprise, the traffic flow values were reasonably
uniform across the state. Unfortunately, the data came county by county from
different years in the span 1991–1995. So these means may not be completely
reliable.

Rather than use the traffic flows as matrix entries, we used their ratios when
compared to two-lane highways. These ratios are 3.433 for interstate highways,
1.682 for four-lane highways, and 1.000 for two-lane highways. This produced
the following matrix W :
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

1.682 1.000 1.000 0 0 1.682 0 0 0 1.000 0
1.000 3.433 0 0 0 5.115 0 0 0 0 3.433
1.000 0 3.433 0 0 0 0 0 0 1.682 8.548

0 0 0 3.433 1.682 4.433 1.000 1.000 3.433 0 4.433
0 0 0 1.682 3.433 0 5.115 0 3.433 1.682 10.299

1.682 5.115 0 4.433 0 3.433 3.433 5.115 1.682 5.115 7.866
0 0 0 1.000 5.115 3.433 3.433 0 0 0 0
0 0 0 1.000 0 5.115 0 3.433 0 0 4.433
0 0 0 3.433 3.433 1.682 0 0 3.433 0 5.115

1.000 0 1.682 0 1.682 5.115 0 0 0 3.433 4.433
0 3.433 8.548 4.433 10.299 7.866 0 4.433 5.115 4.433 3.433



Here are two sample calculations. Consider the city of Evansville, which is
the third row and the third column of W . From Evansville, Interstate 64 leaves
Indiana both to the west and to the east. In addition, the four-lane highway
U.S. 41 leaves the state to the south. Thus the total weight for the connection
between Evansville and “The Rest of the World” — entry (3,11) in matrix W
— is 2×3.433+1.682. For the connection between Indianapolis and Richmond,
we must consider both Interstate 70 and the four-lane highway U.S.40. Thus
the total weight is 3.433 + 1.682.

The issue of entries on the diagonal is a difficult one. Each such entry
represents how a city is connected to itself. By radically adjusting these values
we were able to have the accessibility rankings occur in the same order as the
total personal income rankings listed earlier. But we had no justification for
the entries we used. Instead we chose to use a diagonal entry equal to the
largest highway into that city. This did not produce exactly the order of income
rankings, but there were many similarities. (This is discussed in more detail
below.) The question of how to assign diagonal entries is unresolved.

The Perron-Frobenius Theorem

The accessibility ratings of the cities come from a particular eigenvector of the
adjacency matrix. To explain which eigenvector to use and to justify its choice,
we first need some mathematical background.

Notice that the weighted adjacency matrix W , like all adjacency matrices,
has only real nonnegative entries and is symmetric. The spectral theorem for
real symmetric matrices tells us that all eigenvalues of W are real and that
the set of eigenvectors for this matrix W includes an orthogonal basis for <11.
Further, the matrix W is primitive, meaning that there is some exponent k for
which all entries of W k will be positive.

To see why W is primitive, we can use a theorem from graph theory. For a
0 − 1 adjacency matrix with 1s on the diagonal, like our matrix M , the (i, j)
entry of the power M2 tells how many paths there are from node i to node j
having length at most 2. (The length of a path is the number of edges the path
uses.) Then the entries of M3 count the number of paths of length at most 3,
and so on. In our application, every pair of nodes (cities) has a path between
them, so eventually a power of M will have only positive entries. A weighted
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edge can be interpreted as a conglomerate of individual edges, edges which are
parallel in the network. For instance, the interstate between Indianapolis and
Lafayette can be interpreted as 3.433 non-weighted edges. So the argument for
matrix M still holds when we consider the matrix W .

This is what is needed to apply the following theorem. See Horn & Johnson
[1] for a detailed discussion. (They use the term irreducible rather than primi-
tive.)

Perron-Frobenius Theorem
A nonnegative primitive square matrix has an eigenvalue λ1 which

• is real, positive, and is a simple root of the characteristic equation;

• is larger in magnitude than any other eigenvalue (so that |λ1| > |λi| when
λ1 6= λi); and

• has a unique eigenvector ~v1, which can be chosen to have all positive
entries and to have unit length.

We will refer to λ1 as the principal eigenvalue, with ~v1 as the corresponding
principal eigenvector. This is the eigenvector that provides the accessibility
ratings of the ten cities.

To understand the connection between ~v1 and accessibility of nodes, we
first make an important observation: for any vector ~x not orthogonal to ~v1,
the product W k~x will approach a multiple of ~v1 as k increases. To see why
this is true, begin by writing ~x as a linear combination of an orthogonal basis
of eigenvectors of W . (The spectral theorem guarantees the existence of this
basis.)

~x = α1 ~v1 + α2 ~v2 + · · ·+ αn ~vn

The coefficient α1 cannot be 0, for if it were then the product ~x · ~v1 would also
be 0 and the two vectors would be orthogonal. Form the product

W k~x = λk1α1 ~v1 + λk2α2 ~v2 + · · ·+ λknαn ~vn

Rearranging this gives

W k~x

λk1
= α1 ~v1 +

(
λ2

λ1

)k
α2 ~v2 + · · ·+

(
λn
λ1

)k
αn ~vn

Because λ1 is the eigenvalue of greatest magnitude, the right hand side ap-
proaches α1 ~v1 as k → ∞. Consequently, the ratios of the components of W k~x
will approach the ratios of the components of ~v1. Thus the product W k~x ap-
proaches a multiple of ~v1.

Why should the entries of the principal eigenvector tell us anything about
accessibility of the nodes? There are at least two reasons to interpret these
numbers in this way. One reason comes from the earlier argument showing that
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W is primitive. Once a sufficiently large power W k is computed, the (i, j) entry
tells the total weighting of the paths between node i and node j. Adding the
entries of row i tells the total weighting of paths leaving node i. A city with a
greater total weight for its paths should be more accessible.

A convenient way to add the entries of the rows, and hence compute the
total weight of paths for each node, is to calculate the product W k~e, where ~e is
the vector (1, 1, . . . , 1), containing entirely 1s. The vector ~e is entirely positive
and so is the principal eigenvector ~v1, so the two vectors are not orthogonal.
Therefore, by the theorem, W k~e approaches a multiple of ~v1, making the totals
of these weights proportional to the entries of the principal eigenvector.

A second reason to interpret the entries of ~v1 as accessibility ratings comes
from an analogy to the spread of a rumor. Imagine a rumor beginning with a
person at node i at time 0. By time 1, that person tells people in each adjacent
node and tells the rumor to people in his own city, with the number told dictated
by the weighting. (Telling people in his own city is indicated by the entries on
the diagonal.) By time 2, each person tells the rumor to additional people in
adjacent nodes. As time progresses, which is represented by higher and higher
powers of the matrix, the rumor spreads throughout the network. A node with
more people who had heard the rumor would be rated as more accessible.

Again there is a convenient way to do the computations. Let ~xi be the vector
with 1 in the ith position and 0s elsewhere. This represents the start of the
rumor at node i. The spread of the rumor is calculated by W k ~xi for increasing
k. Since ~xi is nonnegative, it is not orthogonal to ~v1. Thus the product converges
to a multiple of the principal eigenvector, and gives the equilibrium distribution
of the rumor.

Straffin [3] suggests that the rumor analogy also provides an interpretation
for the principal eigenvalue, as the equilibrium growth rate of the rumor. A
network with a larger λ1 should allow a rumor to spread more quickly.

The Results

Computing eigenvalues and eigenvectors for an 11×11 matrix is a daunting task.
Fortunately we were able to use the Maple software package to find approximate
solutions to this problem. The approximate eigenvectors returned by Maple have
unit length, so scaling is not an issue.

The first table below shows the accessibility rankings of these ten cities,
without the proposed highway. The values shown are the components of the
principal eigenvector. Comparing the two columns shows that the weightings of
the highways have a strong effect on the rankings of the cities.
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Table 1: Rankings from the Principal Eigenvector

Unweighted matrix M Weighted matrix W
λ1 = 5.7303 λ1 = 27.2579

The Rest of the World .4920 The Rest of the World .5899
Indianapolis .4413 Indianapolis (1) .4226
South Bend .3224 Gary (2) .3583
Fort Wayne .3215 Fort Wayne (3) .2643
Terre Haute .3145 South Bend (5) .2462
Gary .2705 Terre Haute (7) .2443
Richmond .2653 Evansville (4) .2311
Columbus .2212 Richmond (10) .2116
Evansville .1705 Columbus (9) .1780
Lafayette .1505 Lafayette (6) .1489
Bloomington .1132 Bloomington (8) .0533

It is interesting that the rankings from the weighted matrix W agree some-
what with the total personal income rankings of these cities, shown in parenthe-
ses in Table 1. This suggests that the highway links are indeed major influences
on the economies.

The next table shows the results of including the proposed new highway
in our model. To “build” Interstate 69 required five changes in the matrix
W : the connection from Indianapolis to Bloomington was changed to 1.682 +
3.433 = 5.115, and vice-versa; the connection from Bloomington to Evansville
was changed to 1.000 + 3.433 = 4.433, and vice-versa; and the connection of
Bloomington to itself was changed to 3.433.

Table 2: The Effects of Building the Highway

Without I-69 With I-69
λ1 = 27.2579 λ1 = 27.7457

The Rest of the World .5899 The Rest of the World .5766
Indianapolis .4226 Indianapolis .4348
Gary .3583 Gary .3424
Fort Wayne .2643 Fort Wayne .2558
South Bend .2462 Evansville .2477
Terre Haute .2443 Terre Haute .2438
Evansville .2311 South Bend .2359
Richmond .2116 Richmond .2071
Columbus .1780 Columbus .1792
Lafayette .1489 Bloomington .1540
Bloomington .0533 Lafayette .1439

The cities incident to the new highway — Indianapolis, Bloomington, and
Evansville — all showed an increased value in the principal eigenvector. Given
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its two new major connections, it is not surprising that Bloomington had by far
the greatest increase. All other cities had a decrease, except for Columbus, which
had a slight increase. This may be a ripple effect from its proximity to both
Indianapolis and Bloomington. There were only three changes in the rankings:
Evansville passed both Terre Haute and South Bend into fourth position, Terre
Haute and South Bend reversed positions, and Bloomington passed Lafayette
into ninth position.

Conclusion

Our mathematical model supports the claim that building I-69 would have pos-
itive effects on the economies of the cities in southwest Indiana. But the model
has weaknesses. First, only a few of the roadways in Indiana are included.
Other less direct connections also carry traffic. Second, the weighting system
relies on data collected in different years, which makes the mean traffic flow
values somewhat suspect. A more accurate weighting would also reflect the
variations in traffic flow across the state. Third, the weightings on the diagonal
of the matrix need further analysis and justification. Fourth – and this is very
important for an economic analysis – highway traffic is not the only mode of
transportation in use. Railways and airways, even waterways, are significant in-
fluences, and electronic traffic is becoming a significant factor as well. Airways
are particularly influential for the economies of the university towns: Bloom-
ington, (West) Lafayette, and South Bend. An improved model would include
these other modes of transportation and would have a more reliable weighting
system. Perhaps the rankings then would correctly match the income rankings
of the cities and allow a stronger conclusion.

There are additional questions in interpreting the results. Do the values in
the principal eigenvector have a direct economic meaning? For instance, the
accessibility rating for Bloomington almost tripled as a result of the new high-
way; would its economy triple? Would the increase in the principal eigenvalue
represent an increased economy statewide? These questions deserve further
investigation.
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