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Abstract: Two numerical algorithms for constructing viscosity-shear rate tem-
perature master curves for polymeric liquids from two sets of viscosity-shear rate
measurements at two different temperature values, based upon the temperature-
time superposition principle, are developed. It is shown that simultaneous fitting
of the data produces more accurate results than fitting the data independently.
Numerical examples based upon both artificial and laboratory data are given.

1 Introduction

Viscosity is a fluid property that represents a material’s internal resistance to
deform. Mathematically, viscosity is defined as the ratio of shear stress, τ , and
shear rate, γ̇, i.e.,

η ≡ τ

γ̇
(1)

Fluids are classified as Newtonian if the relation (1) is linear, i.e., if η is
a constant independent of γ̇ and non-Newtonian otherwise. Most polymeric
liquids are non-Newtonian fluids. Viscosity is an easily measured property of
polymeric liquids. Among the instruments used for experimental measurements
of viscosity are extrusion viscometers and capillary and parallel plate rhometers.

For polymeric liquids, viscosity dependence on shear rate can, in general, be
described by the following “viscosity” curves, having the following important
properties:

1. limγ̇→0+ η = η0, where η0 is called the zero shear viscosity.

2. As shown in Figure 1(a), shear rate values below which viscosity levels out
are too small. In order to show the approach of viscosity to its limiting
value, while also showing high shear rate behavior, it is usually the case
that a plot of log(η) versus log(γ̇) is used, as in Figure 1(b).
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3. Experimental measurement of zero shear viscosity using available tools is
not possible for most polymeric liquids.

4. η(γ̇) is a decreasing function of γ̇. This behavior is known as “pseudoplas-
tic” behavior.

5. As shown in Figure 1(b), for sufficiently low shear rate values (log(γ̇) ≤ a),
viscosity becomes independent of shear rate, i.e., the material exhibits
Newtonian behavior. For a ≤ log(γ̇) ≤ b, the dependence of log(η) on
log(γ̇) is non-linear. Finally, for b ≤ log(γ̇) ≤ c, η has a power law
dependence on γ̇. As γ̇ increases beyond c, the viscosity curve levels out,
and the material tends toward Newtonian behavior again.

6. η(γ̇) possesses a horizontal asymptote, which, for most polymeric liquids,
is impossible to determine experimentally due to polymer degradation at
high shear rates.

Experimental data provided by a viscosity measuring instrument for a given
polymeric liquid at a given temperature consists of several points on the viscosity
curve. Determination of the viscosity curve over a wide range of shear rate values
is essential for solving the flow equations. This is usually done by fitting the
data points to one of the viscosity models. In this paper we will consider the
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following models:

η =
η0

1 +
(
η0
τ∗ γ̇
)1−n (2)

η =
η0(

1 + η0
τ∗ γ̇
)1−n (3)

known as the Modified Cross and Carreau models, respectively, where η0 repre-
sents the zero shear rate viscosity, τ∗ represents the critical shear stress roughly
characterizing transition shear stress from the Newtonian range to the pseudo-
plastic region, and n represents the shear rate sensitivity, 0 < n < 1, where
1 − n roughly characterizes the slope of the line over the pseudoplastic region
in the logarithmic plot.

The mathematical problem of fitting a given set of data points on the viscos-
ity curve by either the Modified Cross or Carreau models consists of determining
the three parameters η0, τ∗, and n which minimize the distance between the
model used and the given data. This is represented mathematically as the
solution of a non-linear algebraic system of equations for the three model pa-
rameters.

Viscosity is a decreasing function of temperature. The temperature-time
superposition principle of viscoelasticity describes the dependence of viscosity
on temperature as follows. It states that a change in the temperature from T1
to T2 does not affect the functional dependence of η on γ̇, but merely alters the
zero shear viscosity and the shear rate at which transition from Newtonian to
pseudoplastic behavior occurs. As temperature increases, the viscosity curve at
T1, in the log(η) versus log(γ̇) plot, is shifted by a “shift factor” log(aT ) given
by

aT =
η0(T1) · T2 · ρ2

η0(T1) · T2 · ρ1
(4)

where ρ1, ρ2 denote the densities at the temperature values T1 and T2, re-
spectively. Accordingly, it is possible to construct a temperature master curve
η(γ̇, T ) from which viscosity curves for various temperature values may be ob-
tained. The main purpose of this paper is to present two numerical algorithms
for constructing this temperature master curve and compare their ease of use
and effectiveness.

The rest of the paper is organized in four sections. In section 2 the effect
of temperature on the viscosity, based upon the Arrhenius law, is described. In
section 3 two methods for constructing a temperature master curve from two
sets of data points at two different temperature values are described. In section
4 numerical results are presented and comparisons between the two methods of
section 3 are given. In section 5 some concluding remarks are outlined.
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2 Effect of Temperature on Viscosity

The temperature effect on the viscosity function η(γ̇) is described in many ref-
erences ([1], [2], [4]) by the Arrhenius law. This law states that for thermorhe-
ologically simple fluids the shift factor aT is given by

log aT =
E0

R

(
1
T1
− 1
T2

)
(5)

where E0 is the fluid activation energy in J/mol and R = 8.314 J/molK is the
universal gas constant. It follows that if E0 is known, the temperature master
curve η(γ̇, T ) (see Figure 2) can be constructed.

Temperature master curves corresponding to Modified Cross and Carreau
models can be obtained by combining (2), (3), (4), and (5) as

η =

 η0

1 +
(
η0
τ∗

γ̇
aT

)1−n

( 1
aT

)
(6)

η =

 η0(
1 + η0

τ∗
γ̇
aT

)1−n

( 1
aT

)
(7)

where the ratio T2·ρ2
T1·ρ1

is taken to be unity. This assumption has been shown to
be valid over ordinary temperature ranges for most polymeric liquids.

Remark: Equation (5) describes temperature dependence well for thermorheo-
logically simple (partially crystalline) material. This is because glass transition
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regions for such materials lie well below their fluid states. For amorphous ther-
moplastic materials, however, the glass transition regions are close to their fluid
states. Free volume effects predominate and the Arrhenius-WLF equation

log aT =
E0

R

(
1
T1
− 1
T2

)
− b1

(
T1 − T2

b2 + T2 − T1

)
(8)

should be used instead of (5), where b1 and b2 are parameters to be determined.
It follows that for amorphous thermoplastic materials, construction of the tem-
perature master curves (6) and (7) requires knowledge of three parameters,
namely E0, b1, and b2, rather than just E0 as for the case for partially crys-
talline materials. In this paper, we restrict our attention to partially crystalline
materials and therefore assume equation (5).

3 Construction of Temperature Master Curves

While many references ([1], [3], [4], and the references therein) describe the con-
cept of a master curve, none present any numerical methods for its construc-
tion. In this section we present two numerical algorithms for the construction
of the temperature master curves (6) and (7) for partially crystalline materials
with a shift factor described by (5). Each of our two methods assumes knowl-
edge of two sets of capillary rheometer measurements

(
γ̇

(1)
j , η

(1)
j

)
,
(
γ̇

(2)
j , η

(2)
j

)
,

j = 1, . . . ,M at two different temperature values T1 and T2, respectively, for
some polymer. Both methods are based upon minimization techniques and
applications of Newton’s method [2].

(i) Method of Independent Fit

In this method, we first fit one of the models (2) or (3) to the data set for
temperature T1. This yields an estimate of the zero shear viscosity η0(T1).
Then, independent of the first computation, we fit the model to the data
for temperature T2 from which we obtain an estimate of η0(T2). Estimates
of the shift factor aT and the material’s activation energy E0 are then be
obtained from (4) and (5) and used to construct (6) or (7). Below we
describe an iterative technique for fitting one set of data by models (2)
and (3).

It turns out that the algebraic system of equations for determining the
parameters η0, τ∗, and n, which minimize the distance between a given set
of data points and the model under consideration, is singular. Using the
normalization below in conjunction with an outer iteration for evaluating
the zero shear viscosity we are able to remove the singularity and carry
out the minimization problem. Using the normalization

ξ =
η

η0
δ = η0 · γ̇ (9)
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the models (2) and (3) become

ξ(α, β, δ) =
1

(1 + β · δ)α
(10)

ξ(α, β, δ) =
1

1 + (β · δ)α
(11)

where β = 1
τ∗ and α = 1− n.

Our method involves an “inner” iteration for α and β and an “outer”
iteration for η0. For a given value of η0, we construct the normalized data
(δi, ξi), i = 1, · · · ,M , set

F (α, β) ≡
M∑
i=1

(
1− ξ(α, β, δi)

ξi

)2

(12)

and determine α, β which minimize F (α, β). We do this by applying
Newton’s method [2] to the non-linear algebraic system

∂F

∂α
=

M∑
i=1

(
1
ξ2
i

)
(ξi − ξ(α, β, δi))

(
∂ξ(α, β, δi)

∂α

)
= 0

∂F

∂β
=

M∑
i=1

(
1
ξ2
i

)
(ξi − ξ(α, β, δi))

(
∂ξ(α, β, δi)

∂β

)
= 0 (13)

with initial guesses η(0)
0 = η1, α(0) = 1 − s, and β(0) = 1

γ̇·η(0)
0

where s is

an approximation of the power law index obtained using a linear best fit.
Then, a new value of η0 is computed using fixed-point iteration of

η
(k+1)
0 = η1

[
1 +

(
η

(k)
0 · β(k+1) · γ̇1

)α(k+1)]
, k ≥ 1 (14)

for the Modified Cross model, and

η
(k+1)
0 = η1

[
1 +

(
η

(k)
0 · β(k+1) · γ̇1

)]α(k+1)

, k ≥ 1 (15)

for the Carreau model. Then the whole process of normalization of data,
computation of α and β, and computation of η0 is repeated.

Note that the above iterative method for η0 depends heavily on the first
data point (γ̇1, η1). In practice, a modification that places equal emphasis
on all data points should be used. This would require the solution of a
second minimization problem. Notice further that, in this method of in-
dependent fit, the two resulting viscosity curves at the temperature values
T1 and T2 will usually (due to data inaccuracy) have different values for
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the parameters τ∗ and n and will therefore not be in agreement with the
temperature-time superposition principle. Accordingly, the resulting tem-
perature master curves will be less accurate than those obtained in the
following method.

(ii) Method of Simultaneous Fit

In this method the two sets of data at the temperature values T1 and
T2 are fit by two curves of one of the models (2) or (3) simultaneously
such that the resulting viscosity curves are consistent with the properties
of the temperature-time superposition principle. The numerical results
of Section 4 show that this method enables the construction of a more
accurate temperature master curve than the one obtained by the method
of independent fit.

For given η
(1)
0 and η

(2)
0 , corresponding to T1 and T2, respectively, the

function to be minimized here is

F (α, β) ≡
M∑
i=1

(1− ξ(α, β, δ(1)
i )

ξ
(1)
i

)2

+

(
1− ξ(α, β, δ(2)

i )

ξ
(2)
i

)2
 (16)

where (δ(j)
i , ξ

(j)
i ) are the jth normalized data, j = 1, 2. Then η

(1)
0 and

η
(2)
0 are calculated by an outer iteration using two equations (with the

same values of α and β) similar to (14) for the Modified Cross model and
(15) for the Carreau model. Since both curves are fitted simultaneously,
with the same α and β (hence τ∗ and n), the method ensures that the
fitted curves obey the temperature-time superposition principle, allowing
for more precise calculation of the temperature master curve.

4 Numerical Results and a Comparison of
Methods

Computer programs, in QuickBasic 4.5 with double-precision calculations, were
written to implement the algorithms developed in section 3.

We will now compare the effectiveness of the simultaneous fit and the inde-
pendent fit with two means of analysis. The first and second examples, using
the Modified Cross and Carreau models, respectively, study the accuracy of the
activation energy, E0, calculated by the two fits. The third and fourth exam-
ples, using the Modified Cross and Carreau models, respectively, examine the
error in calculating a given viscosity curve using the temperature master curve
constructed by each of the two methods.

For the first example comparing the accuracy of the simultaneous fit to that
of the independent fit, we choose parameters to create an arbitrary temperature
master curve based on the Modified Cross model. We use η0 = 1500 Pa-sec at
T = 548K, E0 = 40000 J/molK, n = 0.5, and τ∗ = 100000 Pa. From this master
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curve, we generate exact viscosities for two different temperatures. To simulate
experimental error, we perturb each viscosity value slightly by adding a random
number between −12 and 12 and rounding to the nearest integer. (See the data
in Table 1). Then, we fit the data both simultaneously and independently and
compare the resulting activation energy in each case with the “exact” value of
E0.

Shear Rate Perturbed Viscosity Perturbed Viscosity
(1/sec) (Pa-sec) at T = 548K (Pa-sec) at T = 573K

1 1330 940
2 1290 890
5 1185 830
10 1075 785
20 975 714
50 800 580
100 670 500
200 535 425
500 405 310
1000 310 247

Table 1

Fitting the data simultaneously produces E0 = 39978 J/molK, an error of
0.055% compared to the actual value E0 = 40000 J/molK, while fitting the
data independently gives E0 = 39439 J/molK, an error of 1.4%. The simultane-
ous fit, in conjunction with the Modified Cross model, exhibits a more precise
calculation of E0.

Following the same procedure as above, but basing the master curve on the
Carreau model, we generate exact data and perturb it (Table 2). Again, we fit
the data simultaneously and independently, and calculate activation energies.

Shear Rate Perturbed Viscosity Perturbed Viscosity
(1/sec) (Pa-sec) at T = 548K (Pa-sec) at T = 573K

1 1480 1020
2 1472 1010
5 1450 1000
10 1390 970
20 1320 925
50 1140 825
100 940 725
200 760 580
500 510 418
1000 370 310

Table 2
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Simultaneous fitting gives E0 = 39978 J/molK, an error of 0.055% compared
to the actual value E0 = 40000 J/molK, while fitting the data independently
produces E0 = 39650 J/molK, an error of 0.875%. Once again, the simultaneous
fit demonstrates a more precise calculation of E0, this time using the Carreau
model.

As a second example for comparing the accuracy of the simultaneous and
independent fits, we use experimental data, from a capillary rheometer, obtained
for a single material at three different temperatures. We select the data sets for
two of the temperatures (T = 463K, T = 543K) (see Table 3), and use both
the simultaneous and independent fits to create two temperature master curves
(using the Modified Cross model).

Shear Rate Viscosity Viscosity
(1/sec) (Pa-sec) at T = 463K (Pa-sec) at T = 543K

50 1933 1128.4
100 1231.6 723.5
200 771.5 452
500 400.4 244.8
1000 245.2 151.6
2000 145.2 90.7
3500 108.9 58.2

Table 3

At the third temperature, T = 503K, the simultaneously fit master curve
produces the parameters η0 = 31785 Pa-sec, E0 = 44604 J/molK, n = .29545,
and τ∗ = 21901 Pa, while the independently fit master curve gives η0 = 14212
Pa-sec, E0 = 55157 J/molK, n = .29843 and τ∗ = 27485 Pa. Using each of these
sets of parameters, we calculate expected data for T = 503K, and compare with
the experimental data at that temperature (see Table 4).

Shear Experimental Calculated Viscosities Calculated Viscosities
Rate Viscosity (Pa-sec) from (Pa-sec) from

(1/sec) (Pa-sec) at Simultaneously Fit Independently Fit
T = 503K Master Curve Master Curve

50 1433.4 1480.9 1316.58
100 924.8 925.39 839.52
200 615.3 574.31 528.24
500 337.5 303.76 282.73
1000 200 187.09 175.19
2000 115.3 115.06 108.24
3500 70.7 77.66 73.28

Table 4

The average relative error for the simultaneously fit master curve is 5.38%,
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while the average relative error for the independently fit data is 8.84%. The
simultaneous fit with the Modified Cross model demonstrates a more accurate
estimation of viscosity at a given temperature and shear rate.

Finally, we follow the above procedure to estimate viscosity with the two
fits and examine their accuracy, but this time we use the Carreau model. We
use the same data as before (Table 3). At the third temperature, T = 503K,
the simultaneously fit master curve produces the parameters η0 = 8249 Pa-sec,
E0 = 46128 J/molK, n = .27377, and τ∗ = 44631 Pa, while the independently
fit master curve gives η0 = 6791 Pa-sec, E0 = 37972 J/molK, n = .27, and
τ∗ = 46545 Pa. Using each of these sets of parameters, we generate expected
data for T = 503K, and compare with the experimental data at that temperature
(see Table 5).

Shear Experimental Calculated Viscosities Calculated Viscosities
Rate Viscosity (Pa-sec) from (Pa-sec) from

(1/sec) (Pa-sec) at Simultaneously Fit Independently Fit
T = 503K Master Curve Master Curve

50 1433.4 1522.83 1449.42
100 924.8 954.6 914.43
200 615.3 588.03 564.59
500 337.5 305.8 293.5
1000 200 185.57 177.83
2000 115.3 112.39 107.48
3500 70.7 74.92 71.51

Table 5

The average relative error for the simultaneously fit master curve is 5.57%,
while the average relative error for the independently fit master curve is 6.08%.
The simultaneous fit again demonstrates a more accurate estimation of viscosity
at a given temperature and shear rate, this time while employing the Carreau
model.

5 Conclusions

In this paper we have developed two methods for approximating a viscosity-
shear rate temperature master curve for a polymeric liquid using two sets of
viscosity-shear rate data points at two different temperature values. In our
constructions we used the Arrhenius law, i.e., we assumed that the polymer
under consideration was thermorheologically simple. The Arrhenius law is not
suitable to use for polymers that are not thermorheologically simple. For exam-
ple, for amorphous thermoplastic polymers, one should use the Arrhenius-WLF
equation (8) instead. In order to produce a reasonably accurate temperature
master curve based on the Arrhenius-WLF equation, accurate estimations of
the three parameters E0, b1, and b2 are needed. It follows that more than two
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experimental viscosity curves should be used. Considerations of the numerical
computations of the parameters for the Arrhenius-WLF equation along with
other expressions for the shift factor will be the subject of a forthcoming paper.
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