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Abstract

Design equations of uniform shear rate dies for power law non-Newton-
ian fluids are presented together with their derivations, and flow properties
of such dies are examined. In an attempt to decrease the limitations
of such dies, modifications of design equations are given and results are
discussed.

Introduction

A uniform shear rate die is one for which the shear rate is constant at
any given point along the wall. This requirement makes the die insensitive
to a fluid’s power law exponent. Thus, once such a die is constructed
for a certain fluid, all other fluids, which follow the power law can be
extruded uniformly through the same die. This represents one of the main
advantages of a uniform shear rate die. Another unique advantage of these
dies is that their flow residence times are constant; dependent only upon
the characteristics of the extruded material. For an internally consistent
extrudate, every particle will take the same amount of time to flow through
the die, no matter the course. The combination of these two properties
makes such a die suitable for extrusion of shear rate sensitive materials,
and also capable of extruding several power-law materials effectively.

This paper is organized into three sections. In section one we present
the mathematical derivations that lead to the design equations of a uni-
form shear rate die known as the Winter Die, examine the flow properties
of this die, and describe this die’s limitations. It is shown that the uni-
form shear rate requirement puts certain restrictions on the dimensions of
the Winter Die. These restrictions make the die unsuitable for extrusion
of degradable material or for operations that involve high pressure-drops.
In section two we examine different models, which are used to alter the
design of the Winter Die, and effectively lessen its limitations. Finally, in
section three we give several concluding remarks.
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1 Design Equations and Flow Properties

Throughout this paper, it is assumed that the material viscosity-shear
rate relationship can be described by the power law,

η = kγ(n−1) (1.1)

which may be written as

η = η0

�
γ

γ0

�n−1

(1.2)

where γ ≥ γ0 ≥ 0. In (1.2) η, η0, n, and γ represent viscosity, zero viscos-
ity, the power law material index, and shear rate, respectively.

An example of a uniform shear rate die is the Winter Die. We will
confine ourselves to the derivation of design equations for the Winter die
with a rectangular cross section manifold of uniform width (see figure 1.1).

Figure 1.1: Top View (top); Cross-Section (bottom)

Let vm be the average velocity through the manifold, vs the average
velocity through the land or slit, Q(x) the flow rate through the die, a the
arc length of the manifold, and P the pressure.

The condition of uniform shear rate gives

Q(x) = (b− x)hvs = wH(x)vm (1.3)

which states that the rate of material passing through the manifold at the
position x is equal to the rate of material exiting the system between x
and b.
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The pressure gradients in the manifold, dP/da, and in the land, dP/dy,
are related by

dy

dx
= −

"�
dP/dy

dP/da

�2

− 1

#−1/2

(1.4)

By examining the power law, we find that the shear stress, τ , is propor-
tional to the shear rate by the proportionality constant known as viscosity.
That is,

τ = η0γ0

�
γ

γ0

�n

(1.5)

The relationship between the shear stress and the pressure gradient
along the y-axis can be understood by recognizing that the shear rate is
a function along the coordinate axis orthogonal to the die wall. The die
is shown in Cartesian three-space below

Figure 1.2:

The shear rate is related to the pressure gradient by

∂τ

∂z
=

dP

dy
(1.6)

which, upon integration and using the boundary condition τ(0) = 0 (wall
adhesion) gives

τ(z) =
dP

dy
z (1.7)

Using equation (1.7) together with

γ ≡ −dvy

dz
(1.8)

implies

τw = −η0γ
1−n
0

�
dvy

dz

�n

(1.9)

Using γ = γw when z = h/2, and from Michaeli [64], we have

γw =
2(m + 2)Q(x)

bh2
(1.10)

from which m = 1/n. From equation (1.3) it follows that

γw =
(2 + 1/n)vs

h/2
(1.11)
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Similarly, the shear rate at the wall of the manifold can be shown to be

γw =
(2 + 1/n)vm

H(x)/2
(1.12)

Now, since we have stated that the shear rate remains constant throughout
the die, equations (1.11) and (1.12) imply

vm

vs
=

H(x)

h
(1.13)

which upon using (1.3) gives

vm

vs
=

b− x

w

h

H(x)
(1.14)

From (1.13) we acquire

H(x)

h
=

b− x

w

h

H(x)
(1.15)

which in turn leads to,

H(x) =

�
b− x

w

�1/2

h (1.16)

Equation (1.16) describes the manifold height as a function of x.
Now, we focus our attention on the pressure in the die, particularly on

the pressure gradients in the manifold and land. By rewriting equation
(1.7) as

τ(z)

z
=

dP

dy
(1.17)

and using equation (1.5), it follows that

dP

dy
=

η0γ0

�
γ
γ0

�n

z
(1.18)

Since γ = γw at z = h/2 we have

dP

dy
=

2η0γ0

�
γw
γ0

�n

h
(1.19)

Combining Equations (1.18) and (1.19) with (1.16) and the given equation

dP

da
=

2η0γ0

�
γw
γ0

�n

H(x)

it follows that �
dP/dy

dP/da

�2

=
b− x

w
(1.20)

Substituting the right side of equation (1.20) in equation (1.4) gives

dy

dx
= −

��
b− x

w

�
− 1

�−1/2

(1.21)
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which upon integration gives

y(x) = 2w

��
b− x

w

�
− 1

�1/2

(1.22)

Equations (1.16) and (1.22) are called the design equations for the winter
die.
Remark: It follows from (1.22) that the maximum length of the land is
given by

ymax = 2w

��
b

w

�
− 1

�1/2

(1.23)

Also, from (1.22), it follows that as b grows, the length of the land be-
comes large. Thus, for dies with large width the pressure drop will be
large, inducing lip deformation known as clam shelling. This will also
increase viscous heating and make the die not suitable for the extrusion
of degradable material.

2 Alterations of the design equations of
the Winter Die

It has been shown that the Winter Die, although designed with many
desirable features, lacks practicality due to the large land length neces-
sary to create extruded products of substantial width. Our challenge in
working with the design equations of the Winter Die has been to maintain
the desirable features of the die, while shortening the land length neces-
sary to produce wide products. After careful analysis of the situation, we
conclude that one alteration would combine relative simplicity and effec-
tiveness; the manifold of constant width of the Winter Die will be replaced
with a manifold whose width is dependent upon x. After changing w to
w(x), equation (1.21) becomes

dy

dx
=

−1r�
b−x
w(x)

�
− 1

(2.1)

We will make the following assumptions concerning the manifold width
and land length:

A.1 y(b) = 0

A.2 w(0) = 1

A.3 w(x) = b−x
n(x)

It follows from condition (A.3) above and equation (2.1) that

dy

dx
=

−1p
n(x)− 1

(2.2)

which upon integration gives

y(x) = −
Z x

b

1p
n(x)− 1

dx (2.3)
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and hence,

y(0) = −
Z b

0

1p
n(x)− 1

dx (2.4)

The function n(x) has yet to be determined. In order to choose proper
functions, we examine n(x) more thoroughly. One requirement on n(x)
is

n(x) > 1 x ∈ [0, b] (2.5)

We will consider the following two examples for n(x).
Note. In order to show the validity of our results, a means for comparison
must be created. Throughout research, the die width (b) was set equal to
50. Also, from assumptions (A.1) and (A.2), it is shown that the now
varying manifold width ranges from one to zero. In order to capture a
reasonable result for the maximum land length of the Winter die, we set
w = 0.5 in the equation for the maximum land length, giving a value of
approximately 9.95 for a Winter die of width 50.

Example 1: Polynomial
We chose to set

n(x) = s + rxq (2.6)

where q > 0. In this case we have

w(x) =
b− x

s + rxq
(2.7)

and
dy

dx
=

−1√
s + rxq − 1

(2.8)

Integrating (2.8) and using boundary condition (A.1) we obtain the fol-
lowing forms of w(x) and y(x) corresponding to the values 0, 1, and 2 for
q.

q w(x) y(x)

0 w(x) = b−x
s+r

y(x) = b−x√
s−r−1

1 w(x) = b−x
s+rx

y(x) = 2
r

�√
rb + s− 1−

√
rx + s− 1

�

2 w(x) = b−x
s+rx2 y(x) =

ln

 √
rb+
√

rb2+s−1
√

rx+
√

rx2+s−1

!
√

r

For b = 50, r = .2, and s = 50, we have the graph below, which shows
that the value of y-max as q grows from zero to infinity approaches zero.
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With q large, as x increases, the value of xq becomes very large. Therefore,
as x grows, w(x) decreases rapidly, and this trend becomes increasingly
prominent as q grows. This can be shown if we examine w(5) for increasing
values of q, as shown below (note: w(0) has been set to 1).

By examining the two graphs previously shown, we must search for a q
value that will not only decrease the maximum land length, but will also
allow for a physically realistic manifold curve. By setting q equal to 1.8,
a maximum land length of 4.8796 is attained (less than half the value for
the Winter Die). The rate of change of the manifold (shown below) is not
excessive, suggesting physical significance.

Example 2: Exponential
We choose n(x) as follows:

n(x) = s− reqx (2.9)

which gives

w(x) =
b− x

s− reqx
(2.10)
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and
dy

dx
=

−1√
s− reqx − 1

(2.11)

Integrating (2.10) with respect to x and using boundary condition (A.1)
we obtain

y(x) =

2

�
arctanh

�√
s−reqx−1√

s−1

�
− arctanh

�√
s−reqb−1√

s−1

��
q
√

s− 1
(2.12)

which gives

ymax = y(0) =

2

�
arctanh

�√
s−r−1√

s−1

�
− arctanh

�√
s−reqb−1√

s−1

��
q
√

s− 1
(2.13)

Again, it can be shown that by manipulating the parameters (such as by
allowing r to approach zero) we can force the maximum land length to
become zero. However, with these manipulations come problems similar
to those found for the polynomial equation. By setting q = −0.7, r = 100,
s = 150, and b = 50 we obtain the information represented below.

As can clearly be seen, if we adjust the parameters to attain only a moder-
ate land length, the rate of change in the manifold is large. The linearity
of the land length is suggestive that the exponential term may not be as
effective as could be desired.
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3 Concluding Remarks

1. As was assumed, w(0) is given. By setting w(0) = 1, we force b/s = 1
for the first example and b/(s−r) = 1 for the second example. These
conditions dictate the following:

For example 1:
b = s (3.1)

and

For example 2:
b = s− r (3.2)

2. For example 2, as q → −∞, y(0)→ 0.

3. For example 2

lim
q→0

y(x) =
b− x√
b− 1

(3.3)

which shows that as q approaches zero, y(x) and w(x) become linear,
which is equivalent to the situation that occurs in example 1 when
q = 0.

4. For example 2, as we make q increasingly negative, the exponential
term takes effect, and both w(x) and y(x) increase in curvature.

5. An important property in a uniform shear rate die is the equal resi-
dence time for each particle flowing through it. For the Winter Die,
if we set

dy

dx
= − [l(x)− 1]−1/2 (3.4)

where

l(x) =
b− x

w
(3.5)

then
da

dx
=

�
l(x)

l(x)− 1

�1/2

(3.6)

Also, the velocity in the manifold can be related to the velocity in
the land as follows

vm = l(x)1/2vs (3.7)

Using this relationship along with equation (3.7), the total residence
time at x is given by

T (x) =

Z x

0

1

vs(l(x)− 1)1/2
dx +

y(x)

vs
(3.8)

To show that the residence time is independent of x, it is enough to
show that T (x) is constant. To see this we notice that

dT (x)

dx
=

1

vs(l(x)− 1)1/2
+

1

vs

dy

dx
(3.9)

=
1

vs(l(x)− 1)1/2
− 1

vs(l(x)− 1)1/2

= 0

for every x. Therefore, T (x) is constant.
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